Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control can be applied to both coherent and dissipative interactions, which provides the potential to generate novel few-photon states. Recently it has been shown that Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions. In this work, we study a three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings. Our numerical simulations of the full three-body wavefunction and analytical estimates based on Fermi's Golden Rule strongly suggest that the observed features in the outgoing photonic correlations are caused by the resonant enhancement of the three-body losses.

1 aHuerta, Dalia, P. Ornelas1 aBienias, Przemyslaw1 aCraddock, Alexander, N.1 aGullans, Michael1 aHachtel, Andrew, J.1 aKalinowski, Marcin1 aLyon, Mary, E.1 aGorshkov, Alexey, V.1 aRolston, Steven, L.1 aPorto, J., V. uhttps://arxiv.org/abs/2009.1359901697nas a2200205 4500008004100000245010900041210006900150260001300219520100800232100003001240700002801270700003101298700002401329700001601353700001601369700002501385700002301410700002101433856003701454 2020 eng d00aOn-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble0 aOndemand indistinguishable single photons from an efficient and c3/4/20203 aSingle photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), g(2)=2.0(1.5)×10−4, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources.

1 aOrnelas-Huerta, Dalia, P.1 aCraddock, Alexander, N.1 aGoldschmidt, Elizabeth, A.1 aHachtel, Andrew, J.1 aWang, Yidan1 aBienias, P.1 aGorshkov, Alexey, V.1 aRolston, Steve, L.1 aPorto, James, V. uhttps://arxiv.org/abs/2003.02202