With the growing availability of experimental loophole-free Bell tests, it has become possible to implement a new class of device-independent random number generators whose output can be certified to be uniformly random without requiring a detailed model of the quantum devices used. However, all of these experiments require many input bits in order to certify a small number of output bits, and it is an outstanding challenge to develop a system that generates more randomness than is used. Here, we devise a device-independent spot-checking protocol which uses only uniform bits as input. Implemented with a photonic loophole-free Bell test, we can produce 24% more certified output bits (1,181,264,237) than consumed input bits (953,301,640), which is 5 orders of magnitude more efficient than our previous work [arXiv:1812.07786]. The experiment ran for 91.0 hours, creating randomness at an average rate of 3606 bits/s with a soundness error bounded by 5.7×10−7 in the presence of classical side information. Our system will allow for greater trust in public sources of randomness, such as randomness beacons, and the protocols may one day enable high-quality sources of private randomness as the device footprint shrinks.

1 aShalm, Lynden, K.1 aZhang, Yanbao1 aBienfang, Joshua, C.1 aSchlager, Collin1 aStevens, Martin, J.1 aMazurek, Michael, D.1 aAbellán, Carlos1 aAmaya, Waldimar1 aMitchell, Morgan, W.1 aAlhejji, Mohammad, A.1 aFu, Honghao1 aOrnstein, Joel1 aMirin, Richard, P.1 aNam, Sae, Woo1 aKnill, Emanuel uhttps://arxiv.org/abs/1912.1115801465nas a2200265 4500008004100000245006700041210006500108260001500173490000800188520070100196100001800897700002200915700002500937700002400962700002500986700001801011700002101029700002001050700002501070700001601095700001701111700001501128700001901143856003701162 2020 eng d00aExperimental Low-Latency Device-Independent Quantum Randomness0 aExperimental LowLatency DeviceIndependent Quantum Randomness c12/24/20190 v1243 aApplications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of 512 bits with an average experiment time of less than 5 min per block and with certified error bounded by 2−64≈5.42×10−20.

1 aZhang, Yanbao1 aShalm, Lynden, K.1 aBienfang, Joshua, C.1 aStevens, Martin, J.1 aMazurek, Michael, D.1 aNam, Sae, Woo1 aAbellán, Carlos1 aAmaya, Waldimar1 aMitchell, Morgan, W.1 aFu, Honghao1 aMiller, Carl1 aMink, Alan1 aKnill, Emanuel uhttps://arxiv.org/abs/1812.07786