01230nas a2200193 4500008004100000245007800041210006900119260001500188520065600203100001900859700001500878700001500893700001600908700001800924700001500942700001800957700001700975856004400992 2004 eng d00aQuantum information processing using localized ensembles of nuclear spins0 aQuantum information processing using localized ensembles of nucl c2004/07/233 aWe describe a technique for quantum information processing based on localized en sembles of nuclear spins. A qubit is identified as the presence or absence of a collective excitation of a mesoscopic ensemble of nuclear spins surrounding a single quantum dot. All single and two-qubit operations can be effected using hyperfine interactions and single-electron spin rotations, hence the proposed scheme avoids gate errors arising from entanglement between spin and orbital degrees of freedom. Ultra-long coherence times of nuclear spins suggest that this scheme could be particularly well suited for applications where long lived memory is essential.
1 aTaylor, J., M.1 aGiedke, G.1 aChrist, H.1 aParedes, B.1 aCirac, J., I.1 aZoller, P.1 aLukin, M., D.1 aImamoglu, A. uhttp://arxiv.org/abs/cond-mat/0407640v201129nas a2200145 4500008004100000245007400041210006900115260001500184490000700199520067900206100001900885700001700904700001800921856004400939 2003 eng d00aControlling a mesoscopic spin environment by quantum bit manipulation0 aControlling a mesoscopic spin environment by quantum bit manipul c2003/12/100 v913 aWe present a unified description of cooling and manipulation of a mesoscopic bath of nuclear spins via coupling to a single quantum system of electronic spin (quantum bit). We show that a bath cooled by the quantum bit rapidly saturates. Although the resulting saturated states of the spin bath (``dark states'') generally have low degrees of polarization and purity, their symmetry properties make them a valuable resource for the coherent manipulation of quantum bits. Specifically, we demonstrate that the dark states of nuclear ensembles can be used to coherently control the system-bath interaction and to provide a robust, long-lived quantum memory for qubit states.
1 aTaylor, J., M.1 aImamoglu, A.1 aLukin, M., D. uhttp://arxiv.org/abs/cond-mat/0308459v1