Ion trap systems are a leading platform for large scale quantum computers. Trapped ion qubit crystals are fully-connected and reconfigurable, owing to their long range Coulomb interaction that can be modulated with external optical forces. However, the spectral crowding of collective motional modes could pose a challenge to the control of such interactions for large numbers of qubits. Here, we show that high-fidelity quantum gate operations are still possible with very large trapped ion crystals, simplifying the scaling of ion trap quantum computers. To this end, we present analytical work that determines how parallel entangling gates produce a crosstalk error that falls off as the inverse cube of the distance between the pairs. We also show experimental work demonstrating entangling gates on a fully-connected chain of seventeen 171Yb+ ions with fidelities as high as 97(1)%.

1 aLandsman, Kevin, A.1 aWu, Yukai1 aLeung, Pak, Hong1 aZhu, Daiwei1 aLinke, Norbert, M.1 aBrown, Kenneth, R.1 aDuan, Luming1 aMonroe, Christopher, R. uhttps://arxiv.org/abs/1905.1042101532nas a2200193 4500008004100000245009300041210006900134260001500203300001100218490000800229520089100237100002101128700002401149700002201173700002301195700002401218700002301242856007301265 2018 eng d00aRobust two-qubit gates in a linear ion crystal using a frequency-modulated driving force0 aRobust twoqubit gates in a linear ion crystal using a frequencym c2018/01/09 a0205010 v1203 aIn an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multi-qubit logical gates. Any residual entanglement between the internal and motional states of the ions will result in decoherence errors, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated (FM) driving force to minimize such errors and implement it experimentally. In simulation, we obtained an optimized FM gate that can suppress decoherence to less than 10−4 and is robust against a frequency drift of more than ±1 kHz. The two-qubit gate was tested in a five-qubit trapped ion crystal, with 98.3(4)% fidelity for a Mølmer-Sørensen entangling gate and 98.6(7)% for a controlled-not (CNOT) gate. We also show an optimized FM two-qubit gate for 17 ions, proving the scalability of our method.

1 aLeung, Pak, Hong1 aLandsman, Kevin, A.1 aFiggatt, Caroline1 aLinke, Norbert, M.1 aMonroe, Christopher1 aBrown, Kenneth, R. uhttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.020501