Unitary circuits subject to repeated projective measurements can undergo an entanglement phase transition (EPT) as a function of the measurement rate. This transition is generally understood in terms of a competition between the scrambling effects of unitary dynamics and the disentangling effects of measurements. We find that, surprisingly, EPTs are possible even in the absence of scrambling unitary dynamics, where they are best understood as arising from measurements alone. This motivates us to introduce \emph{measurement-only models}, in which the "scrambling" and "un-scrambling" effects driving the EPT are fundamentally intertwined and cannot be attributed to physically distinct processes. This represents a novel form of an EPT, conceptually distinct from that in hybrid unitary-projective circuits. We explore the entanglement phase diagrams, critical points, and quantum code properties of some of these measurement-only models. We find that the principle driving the EPTs in these models is \emph{frustration}, or mutual incompatibility, of the measurements. Suprisingly, an entangling (volume-law) phase is the generic outcome when measuring sufficiently long but still local (≳3-body) operators. We identify a class of exceptions to this behavior ("bipartite ensembles") which cannot sustain an entangling phase, but display dual area-law phases, possibly with different kinds of quantum order, separated by self-dual critical points. Finally, we introduce a measure of information spreading in dynamics with measurements and use it to demonstrate the emergence of a statistical light-cone, despite the non-locality inherent to quantum measurements.

1 aIppoliti, Matteo1 aGullans, Michael1 aGopalakrishnan, Sarang1 aHuse, David, A.1 aKhemani, Vedika uhttps://arxiv.org/abs/2004.0956002430nas a2200205 4500008004100000245007100041210006900112260001500181520180900196100002002005700002002025700002302045700002102068700001602089700002402105700002502129700001702154700001602171856003702187 2021 eng d00aLearnability of the output distributions of local quantum circuits0 aLearnability of the output distributions of local quantum circui c10/11/20213 aThere is currently a large interest in understanding the potential advantages quantum devices can offer for probabilistic modelling. In this work we investigate, within two different oracle models, the probably approximately correct (PAC) learnability of quantum circuit Born machines, i.e., the output distributions of local quantum circuits. We first show a negative result, namely, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable in the statistical query model, i.e., when given query access to empirical expectation values of bounded functions over the sample space. This immediately implies the hardness, for both quantum and classical algorithms, of learning from statistical queries the output distributions of local quantum circuits using any gate set which includes the Clifford group. As many practical generative modelling algorithms use statistical queries -- including those for training quantum circuit Born machines -- our result is broadly applicable and strongly limits the possibility of a meaningful quantum advantage for learning the output distributions of local quantum circuits. As a positive result, we show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable by a classical learner. Our results are equally applicable to the problems of learning an algorithm for generating samples from the target distribution (generative modelling) and learning an algorithm for evaluating its probabilities (density modelling). They provide the first rigorous insights into the learnability of output distributions of local quantum circuits from the probabilistic modelling perspective.

1 aHinsche, Marcel1 aIoannou, Marios1 aNietner, Alexander1 aHaferkamp, Jonas1 aQuek, Yihui1 aHangleiter, Dominik1 aSeifert, Jean-Pierre1 aEisert, Jens1 aSweke, Ryan uhttps://arxiv.org/abs/2110.0551702003nas a2200253 4500008004100000245008100041210006900122260001400191520125700205100002301462700001801485700002001503700002101523700002001544700002001564700001701584700002101601700001401622700001701636700002401653700002001677700001501697856003701712 2021 eng d00aQuantum Computational Supremacy via High-Dimensional Gaussian Boson Sampling0 aQuantum Computational Supremacy via HighDimensional Gaussian Bos c2/24/20213 aPhotonics is a promising platform for demonstrating quantum computational supremacy (QCS) by convincingly outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing photonics proposals and demonstrations face significant hurdles. Experimentally, current implementations of Gaussian boson sampling lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of GBS. In this work, we make significant progress in improving both the theoretical evidence and experimental prospects. On the theory side, we provide strong evidence for the hardness of Gaussian boson sampling, placing it on par with the strongest theoretical proposals for QCS. On the experimental side, we propose a new QCS architecture, high-dimensional Gaussian boson sampling, which is programmable and can be implemented with low loss rates using few optical components. We show that particular classical algorithms for simulating GBS are vastly outperformed by high-dimensional Gaussian boson sampling experiments at modest system sizes. This work thus opens the path to demonstrating QCS with programmable photonic processors.

1 aDeshpande, Abhinav1 aMehta, Arthur1 aVincent, Trevor1 aQuesada, Nicolas1 aHinsche, Marcel1 aIoannou, Marios1 aMadsen, Lars1 aLavoie, Jonathan1 aQi, Haoyu1 aEisert, Jens1 aHangleiter, Dominik1 aFefferman, Bill1 aDhand, Ish uhttps://arxiv.org/abs/2102.1247401512nas a2200217 4500008004100000245007100041210006900112260001400181490000700195520085300202100002801055700002301083700001901106700001901125700002201144700002401166700002501190700002101215700002101236856003701257 2021 eng d00aQuench Dynamics of a Fermi Gas with Strong Long-Range Interactions0 aQuench Dynamics of a Fermi Gas with Strong LongRange Interaction c5/24/20210 v113 aWe induce strong non-local interactions in a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approximately described by a t−V model on a square lattice where the fermions experience isotropic nearest-neighbor interactions and are free to hop only along one direction. We measure the interactions using many-body Ramsey interferometry and study the lifetime of the gas in the presence of tunneling, finding that tunneling does not reduce the lifetime. To probe the interplay of non-local interactions with tunneling, we investigate the short-time relaxation dynamics of charge density waves in the gas. We find that strong nearest-neighbor interactions slow down the relaxation. Our work opens the door for quantum simulations of systems with strong non-local interactions such as extended Fermi-Hubbard models.

1 aGuardado-Sanchez, Elmer1 aSpar, Benjamin, M.1 aSchauss, Peter1 aBelyansky, Ron1 aYoung, Jeremy, T.1 aBienias, Przemyslaw1 aGorshkov, Alexey, V.1 aIadecola, Thomas1 aBakr, Waseem, S. uhttps://arxiv.org/abs/2010.0587101565nas a2200169 4500008004100000245004300041210004200084260001400126520108300140100003001223700002001253700002101273700002501294700002101319700001801340856003701358 2021 eng d00aRainbow Scars: From Area to Volume Law0 aRainbow Scars From Area to Volume Law c7/12/20213 aQuantum many-body scars (QMBS) constitute a new quantum dynamical regime in which rare "scarred" eigenstates mediate weak ergodicity breaking. One open question is to understand the most general setting in which these states arise. In this work, we develop a generic construction that embeds a new class of QMBS, rainbow scars, into the spectrum of an arbitrary Hamiltonian. Unlike other examples of QMBS, rainbow scars display extensive bipartite entanglement entropy while retaining a simple entanglement structure. Specifically, the entanglement scaling is volume-law for a random bipartition, while scaling for a fine-tuned bipartition is sub-extensive. When internal symmetries are present, the construction leads to multiple, and even towers of rainbow scars revealed through distinctive non-thermal dynamics. To this end, we provide an experimental road map for realizing rainbow scar states in a Rydberg-atom quantum simulator, leading to coherent oscillations distinct from the strictly sub-volume-law QMBS previously realized in the same system.

1 aLanglett, Christopher, M.1 aYang, Zhi-Cheng1 aWildeboer, Julia1 aGorshkov, Alexey, V.1 aIadecola, Thomas1 aXu, Shenglong uhttps://arxiv.org/abs/2107.0341601383nas a2200157 4500008004100000245005600041210005500097260001400152490000800166520093200174100002001106700001601126700002501142700002101167856003701188 2020 eng d00aHilbert-Space Fragmentation from Strict Confinement0 aHilbertSpace Fragmentation from Strict Confinement c5/22/20200 v1243 aWe study one-dimensional spin-1/2 models in which strict confinement of Ising domain walls leads to the fragmentation of Hilbert space into exponentially many disconnected subspaces. Whereas most of the previous works emphasize dipole moment conservation as an essential ingredient for such fragmentation, we instead require two commuting U(1) conserved quantities associated with the total domain-wall number and the total magnetization. The latter arises naturally from the confinement of domain walls. Remarkably, while some connected components of the Hilbert space thermalize, others are integrable by Bethe ansatz. We further demonstrate how this Hilbert-space fragmentation pattern arises perturbatively in the confining limit of Z2 gauge theory coupled to fermionic matter, leading to a hierarchy of time scales for motion of the fermions. This model can be realized experimentally in two complementary settings.

1 aYang, Zhi-Cheng1 aLiu, Fangli1 aGorshkov, Alexey, V.1 aIadecola, Thomas uhttps://arxiv.org/abs/1912.0430001427nas a2200157 4500008004100000245007300041210006900114260001400183520092900197100001601126700002001142700002401162700002101186700002501207856003701232 2020 eng d00aLocalization and criticality in antiblockaded 2D Rydberg atom arrays0 aLocalization and criticality in antiblockaded 2D Rydberg atom ar c12/7/20203 aControllable Rydberg atom arrays have provided new insights into fundamental properties of quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional disorder on Rydberg atoms trapped in a 2D square lattice under anti-blockade (facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The critical regime's existence depends crucially upon the singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench dynamics to probe the three different regimes experimentally.

1 aLiu, Fangli1 aYang, Zhi-Cheng1 aBienias, Przemyslaw1 aIadecola, Thomas1 aGorshkov, Alexey, V. uhttps://arxiv.org/abs/2012.0394601854nas a2200193 4500008004100000245008800041210006900129260001400198520128100212100001501493700001701508700001501525700001601540700001701556700001401573700001901587700001701606856003701623 2020 eng d00aProbing XY phase transitions in a Josephson junction array with tunable frustration0 aProbing XY phase transitions in a Josephson junction array with c1/22/20203 aThe seminal theoretical works of Berezinskii, Kosterlitz, and Thouless presented a new paradigm for phase transitions in condensed matter that are driven by topological excitations. These transitions have been extensively studied in the context of two-dimensional XY models -- coupled compasses -- and have generated interest in the context of quantum simulation. Here, we use a circuit quantum-electrodynamics architecture to study the critical behavior of engineered XY models through their dynamical response. In particular, we examine not only the unfrustrated case but also the fully-frustrated case which leads to enhanced degeneracy associated with the spin rotational [U(1)] and discrete chiral (Z2) symmetries. The nature of the transition in the frustrated case has posed a challenge for theoretical studies while direct experimental probes remain elusive. Here we identify the transition temperatures for both the unfrustrated and fully-frustrated XY models by probing a Josephson junction array close to equilibrium using weak microwave excitations and measuring the temperature dependence of the effective damping obtained from the complex reflection coefficient. We argue that our probing technique is primarily sensitive to the dynamics of the U(1) part.

1 aCosmic, R.1 aKawabata, K.1 aAshida, Y.1 aIkegami, H.1 aFurukawa, S.1 aPatil, P.1 aTaylor, J., M.1 aNakamura, Y. uhttps://arxiv.org/abs/2001.0787701814nas a2200169 4500008004100000245006700041210006600108260001400174490000800188520130400196100001701500700002201517700002401539700002501563700001901588856003701607 2019 eng d00aProbing ground-state phase transitions through quench dynamics0 aProbing groundstate phase transitions through quench dynamics c9/11/20190 v1233 aThe study of quantum phase transitions requires the preparation of a many-body system near its ground state, a challenging task for many experimental systems. The measurement of quench dynamics, on the other hand, is now a routine practice in most cold atom platforms. Here we show that quintessential ingredients of quantum phase transitions can be probed directly with quench dynamics in integrable and nearly integrable systems. As a paradigmatic example, we study global quench dynamics in a transverse-field Ising model with either short-range or long-range interactions. When the model is integrable, we discover a new dynamical critical point with a non-analytic signature in the short-range correlators. The location of the dynamical critical point matches that of the quantum critical point and can be identified using a finite-time scaling method. We extend this scaling picture to systems near integrability and demonstrate the continued existence of a dynamical critical point detectable at prethermal time scales. Therefore, our method can be used to approximately locate the quantum critical point. The scaling method is also relevant to experiments with finite time and system size, and our predictions are testable in near-term experiments with trapped ions and Rydberg atoms.

1 aTitum, Paraj1 aIosue, Joseph, T.1 aGarrison, James, R.1 aGorshkov, Alexey, V.1 aGong, Zhe-Xuan uhttps://arxiv.org/abs/1809.0637701709nas a2200241 4500008004100000245007100041210006900112260001500181520103600196100001501232700002101247700001801268700001801286700002501304700001301329700001401342700001201356700001501368700001701383700001401400700001601414856003701430 2019 eng d00aProgrammable Quantum Simulations of Spin Systems with Trapped Ions0 aProgrammable Quantum Simulations of Spin Systems with Trapped Io c12/17/20193 aLaser-cooled and trapped atomic ions form an ideal standard for the simulation of interacting quantum spin models. Effective spins are represented by appropriate internal energy levels within each ion, and the spins can be measured with near-perfect efficiency using state-dependent fluorescence techniques. By applying optical fields that exert optical dipole forces on the ions, their Coulomb interaction can be modulated in ways that give rise to long-range and tunable spin-spin interactions that can be reconfigured by shaping the spectrum and pattern of the laser fields. Here we review the theoretical mapping of atomic ions to interacting spin systems, the experimental preparation of complex equilibrium states, and the study of dynamical processes of this many-body interacting quantum system. The use of such quantum simulators for studying spin models may inform our understanding of exotic quantum materials and shed light on interacting quantum systems that cannot be modeled with conventional computers.

1 aMonroe, C.1 aCampbell, W., C.1 aDuan, L., -M.1 aGong, Z., -X.1 aGorshkov, Alexey, V.1 aHess, P.1 aIslam, R.1 aKim, K.1 aPagano, G.1 aRicherme, P.1 aSenko, C.1 aYao, N., Y. uhttps://arxiv.org/abs/1912.0784501718nas a2200169 4500008004100000245008800041210006900129260001500198520118200213100001501395700002001410700001701430700002201447700001901469700002301488856003701511 2018 eng d00aCircuit QED-based measurement of vortex lattice order in a Josephson junction array0 aCircuit QEDbased measurement of vortex lattice order in a Joseph c2018/03/123 aSuperconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature state of the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii--Kosterlitz--Thouless (BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an external magnetic field is added, the effective spins of the XY model become frustrated, leading to the formation of topological defects (vortices). Here we observe the many-body dynamics of such an array, including frustration, via its coupling to a superconducting microwave cavity. We take the design of the transmon qubit, but replace the single junction between two antenna pads with the complete array. This allows us to probe the system at 10 mK with minimal self-heating by using weak coherent states at the single (microwave) photon level to probe the resonance frequency of the cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array.

1 aCosmic, R.1 aIkegami, Hiroki1 aLin, Zhirong1 aInomata, Kunihiro1 aTaylor, J., M.1 aNakamura, Yasunobu uhttps://arxiv.org/abs/1803.0411301662nas a2200217 4500008004100000245004200041210004000083260001500123300001200138490000600150520105500156100002101211700002201232700002101254700002201275700002301297700001601320700001901336700001601355856007301371 2018 eng d00aElectro-mechano-optical NMR detection0 aElectromechanooptical NMR detection c2018/02/01 a152-1580 v53 aSignal reception of nuclear magnetic resonance (NMR) usually relies on electrical amplification of the electromotive force caused by nuclear induction. Here, we report up-conversion of a radio-frequency NMR signal to an optical regime using a high-stress silicon nitride membrane that interfaces the electrical detection circuit and an optical cavity through the electro-mechanical and the opto-mechanical couplings. This enables optical NMR detection without sacrificing the versatility of the traditional nuclear induction approach. While the signal-to-noise ratio is currently limited by the Brownian motion of the membrane as well as additional technical noise, we find it can exceed that of the conventional electrical schemes by increasing the electro-mechanical coupling strength. The electro-mechano-optical NMR detection presented here can even be combined with the laser cooling technique applied to nuclear spins.

1 aTakeda, Kazuyuki1 aNagasaka, Kentaro1 aNoguchi, Atsushi1 aYamazaki, Rekishu1 aNakamura, Yasunobu1 aIwase, Eiji1 aTaylor, J., M.1 aUsami, Koji uhttps://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-2-15201552nas a2200181 4500008004100000245007900041210006900120260001500189300001100204490000700215520101200222100002101234700001901255700001901274700001901293700002101312856003701333 2017 eng d00aHigh-Order Multipole Radiation from Quantum Hall States in Dirac Materials0 aHighOrder Multipole Radiation from Quantum Hall States in Dirac c2017/06/30 a2354390 v953 aTopological states can exhibit electronic coherence on macroscopic length scales. When the coherence length exceeds the wavelength of light, one can expect new phenomena to occur in the optical response of these states. We theoretically characterize this limit for integer quantum Hall states in two-dimensional Dirac materials. We find that the radiation from the bulk is dominated by dipole emission, whose spectral properties vary with the local disorder potential. On the other hand, the radiation from the edge is characterized by large multipole moments in the far-field associated with the efficient transfer of angular momentum from the electrons into the scattered light. These results demonstrate that high-order multipole transitions are a necessary component for the optical spectroscopy and control of quantum Hall and related topological states in electronic systems.

1 aGullans, Michael1 aTaylor, J., M.1 aImamoglu, Atac1 aGhaemi, Pouyan1 aHafezi, Mohammad uhttps://arxiv.org/abs/1701.0346402646nas a2200241 4500008004100000245008200041210006900123260001500192520190700207100002902114700002302143700001802166700002302184700001502207700002002222700002702242700002402269700001902293700002002312700001702332700001802349856003702367 2017 eng d00aOn the readiness of quantum optimization machines for industrial applications0 areadiness of quantum optimization machines for industrial applic c2017/08/313 aThere have been multiple attempts to demonstrate that quantum annealing and, in particular, quantum annealing on quantum annealing machines, has the potential to outperform current classical optimization algorithms implemented on CMOS technologies. The benchmarking of these devices has been controversial. Initially, random spin-glass problems were used, however, these were quickly shown to be not well suited to detect any quantum speedup. Subsequently, benchmarking shifted to carefully crafted synthetic problems designed to highlight the quantum nature of the hardware while (often) ensuring that classical optimization techniques do not perform well on them. Even worse, to date a true sign of improved scaling with the number problem variables remains elusive when compared to classical optimization techniques. Here, we analyze the readiness of quantum annealing machines for real-world application problems. These are typically not random and have an underlying structure that is hard to capture in synthetic benchmarks, thus posing unexpected challenges for optimization techniques, both classical and quantum alike. We present a comprehensive computational scaling analysis of fault diagnosis in digital circuits, considering architectures beyond D-wave quantum annealers. We find that the instances generated from real data in multiplier circuits are harder than other representative random spin-glass benchmarks with a comparable number of variables. Although our results show that transverse-field quantum annealing is outperformed by state-of-the-art classical optimization algorithms, these benchmark instances are hard and small in the size of the input, therefore representing the first industrial application ideally suited for near-term quantum annealers.

1 aPerdomo-Ortiz, Alejandro1 aFeldman, Alexander1 aOzaeta, Asier1 aIsakov, Sergei, V.1 aZhu, Zheng1 aO'Gorman, Bryan1 aKatzgraber, Helmut, G.1 aDiedrich, Alexander1 aNeven, Hartmut1 ade Kleer, Johan1 aLackey, Brad1 aBiswas, Rupak uhttps://arxiv.org/abs/1708.0978002179nas a2200157 4500008004100000245010300041210006900144520165700213100002001870700001901890700001901909700001701928700002501945700001501970856003601985 2016 eng d00aMapping constrained optimization problems to quantum annealing with application to fault diagnosis0 aMapping constrained optimization problems to quantum annealing w3 aCurrent quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.1 aBian, Zhengbing1 aChudak, Fabian1 aIsrael, Robert1 aLackey, Brad1 aMacready, William, G1 aRoy, Aidan uhttp://arxiv.org/abs/1603.0311103037nas a2200193 4500008004100000245010200041210006900143260001500212300000700227490000600234520240900240100002002649700001902669700002602688700001702714700002502731700001502756856007202771 2016 eng d00aMapping contrained optimization problems to quantum annealing with application to fault diagnosis0 aMapping contrained optimization problems to quantum annealing wi c2016/07/28 a140 v33 aCurrent quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping Boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular, we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. By contrast, global embedding techniques generate a hardware-independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of the D-Wave hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D- Wave’s QA hardware to circuit-based fault diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000 N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Furthermore, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.

1 aBian, Zhengbing1 aChudak, Fabian1 aIsrael, Robert, Brian1 aLackey, Brad1 aMacready, William, G1 aRoy, Aiden uhttp://journal.frontiersin.org/article/10.3389/fict.2016.00014/full01371nas a2200193 4500008004100000245007300041210006900114260002600183300000700209490000600216520073500222100002000957700001900977700001900996700001701015700002501032700001501057856010501072 2014 eng d00aDiscrete optimization using quantum annealing on sparse Ising models0 aDiscrete optimization using quantum annealing on sparse Ising mo bFrontiersc2014/09/01 a560 v23 aThis paper discusses techniques for solving discrete optimization problems using quantum annealing. Practical issues likely to affect the computation include precision limitations, finite temperature, bounded energy range, sparse connectivity, and small numbers of qubits. To address these concerns we propose a way of finding energy representations with large classical gaps between ground and first excited states, efficient algorithms for mapping non-compatible Ising models into the hardware, and the use of decomposition methods for problems that are too large to fit in hardware. We validate the approach by describing experiments with D-Wave quantum hardware for low density parity check decoding with up to 1000 variables.1 aBian, Zhengbing1 aChudak, Fabian1 aIsrael, Robert1 aLackey, Brad1 aMacready, William, G1 aRoy, Aidan uhttps://quics.umd.edu/publications/discrete-optimization-using-quantum-annealing-sparse-ising-models01152nas a2200133 4500008004100000245006100041210006100102260001400163490000600177520075500183100002300938700002000961856003700981 2014 eng d00aQuantum computation of discrete logarithms in semigroups0 aQuantum computation of discrete logarithms in semigroups c2014/01/10 v83 a We describe an efficient quantum algorithm for computing discrete logarithms in semigroups using Shor's algorithms for period finding and discrete log as subroutines. Thus proposed cryptosystems based on the presumed hardness of discrete logarithms in semigroups are insecure against quantum attacks. In contrast, we show that some generalizations of the discrete log problem are hard in semigroups despite being easy in groups. We relate a shifted version of the discrete log problem in semigroups to the dihedral hidden subgroup problem, and we show that the constructive membership problem with respect to $k \ge 2$ generators in a black-box abelian semigroup of order $N$ requires $\tilde \Theta(N^{\frac{1}{2}-\frac{1}{2k}})$ quantum queries. 1 aChilds, Andrew, M.1 aIvanyos, Gábor uhttp://arxiv.org/abs/1310.6238v201289nas a2200205 4500008004100000245007500041210006900116260001300185490000800198520067800206100002100884700001900905700002200924700001700946700001500963700001900978700002500997700002401022856003701046 2013 eng d00aQuantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator0 aQuantum Catalysis of Magnetic Phase Transitions in a Quantum Sim c2013/9/50 v1113 a We control quantum fluctuations to create the ground state magnetic phases of a classical Ising model with a tunable longitudinal magnetic field using a system of 6 to 10 atomic ion spins. Due to the long-range Ising interactions, the various ground state spin configurations are separated by multiple first-order phase transitions, which in our zero temperature system cannot be driven by thermal fluctuations. We instead use a transverse magnetic field as a quantum catalyst to observe the first steps of the complete fractal devil's staircase, which emerges in the thermodynamic limit and can be mapped to a large number of many-body and energy-optimization problems. 1 aRicherme, Philip1 aSenko, Crystal1 aKorenblit, Simcha1 aSmith, Jacob1 aLee, Aaron1 aIslam, Rajibul1 aCampbell, Wesley, C.1 aMonroe, Christopher uhttp://arxiv.org/abs/1303.6983v201417nas a2200253 4500008004100000245008300041210006900124260001500193300001100208490000700219520068500226100002200911700001600933700002300949700001900972700002300991700001901014700001801033700001701051700001801068700001601086700002401102856003701126 2012 eng d00aQuantum Simulation of Spin Models on an Arbitrary Lattice with Trapped Ions 0 aQuantum Simulation of Spin Models on an Arbitrary Lattice with T c2012/09/27 a0950240 v143 a A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin-spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how appropriate design of laser fields can provide for arbitrary multidimensional spin-spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently existing trap technology and is scalable to levels where classical methods of simulation are intractable. 1 aKorenblit, Simcha1 aKafri, Dvir1 aCampbell, Wess, C.1 aIslam, Rajibul1 aEdwards, Emily, E.1 aGong, Zhe-Xuan1 aLin, Guin-Dar1 aDuan, Luming1 aKim, Jungsang1 aKim, Kihwan1 aMonroe, Christopher uhttp://arxiv.org/abs/1201.0776v101230nas a2200193 4500008004100000245007800041210006900119260001500188520065600203100001900859700001500878700001500893700001600908700001800924700001500942700001800957700001700975856004400992 2004 eng d00aQuantum information processing using localized ensembles of nuclear spins0 aQuantum information processing using localized ensembles of nucl c2004/07/233 aWe describe a technique for quantum information processing based on localized en sembles of nuclear spins. A qubit is identified as the presence or absence of a collective excitation of a mesoscopic ensemble of nuclear spins surrounding a single quantum dot. All single and two-qubit operations can be effected using hyperfine interactions and single-electron spin rotations, hence the proposed scheme avoids gate errors arising from entanglement between spin and orbital degrees of freedom. Ultra-long coherence times of nuclear spins suggest that this scheme could be particularly well suited for applications where long lived memory is essential. 1 aTaylor, J., M.1 aGiedke, G.1 aChrist, H.1 aParedes, B.1 aCirac, J., I.1 aZoller, P.1 aLukin, M., D.1 aImamoglu, A. uhttp://arxiv.org/abs/cond-mat/0407640v201129nas a2200145 4500008004100000245007400041210006900115260001500184490000700199520067900206100001900885700001700904700001800921856004400939 2003 eng d00aControlling a mesoscopic spin environment by quantum bit manipulation0 aControlling a mesoscopic spin environment by quantum bit manipul c2003/12/100 v913 aWe present a unified description of cooling and manipulation of a mesoscopic bath of nuclear spins via coupling to a single quantum system of electronic spin (quantum bit). We show that a bath cooled by the quantum bit rapidly saturates. Although the resulting saturated states of the spin bath (``dark states'') generally have low degrees of polarization and purity, their symmetry properties make them a valuable resource for the coherent manipulation of quantum bits. Specifically, we demonstrate that the dark states of nuclear ensembles can be used to coherently control the system-bath interaction and to provide a robust, long-lived quantum memory for qubit states. 1 aTaylor, J., M.1 aImamoglu, A.1 aLukin, M., D. uhttp://arxiv.org/abs/cond-mat/0308459v1