Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions. The three-body interactions can be either dispersive or dissipative, with both types possibly giving rise to exotic, strongly-interacting, and topological phases of matter. Despite past theoretical and experimental studies of the regime with dispersive interaction, the dissipative regime is still mostly unexplored. Using a renormalization group technique to solve the three-body Schrödinger equation, we show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons. We demonstrate how these interactions relate to the transmission through a single-mode cavity, which can be used as a probe of the three-body physics in current experiment

1 aKalinowski, Marcin1 aWang, Yidan1 aBienias, Przemyslaw1 aGullans, Michael, J.1 aOrnelas-Huerta, Dalia, P.1 aCraddock, Alexander, N.1 aRolston, Steven, L.1 aPorto, J., V.1 aBüchler, Hans, Peter1 aGorshkov, Alexey, V. uhttps://arxiv.org/abs/2010.09772