We propose a measurement scheme that validates the preparation of a target n-qubit stabilizer state. The scheme involves a measurement of n Pauli observables, a priori determined from the target stabilizer and which can be realized using single-qubit gates. Based on the proposed validation scheme, we derive an explicit expression for the worse-case fidelity, i.e., the minimum fidelity between the target stabilizer state and any other state consistent with the measured data. We also show that the worse-case fidelity can be certified, with high probability, using O(n) copies of the state of the system per measured observable.

1 aKalev, Amir1 aKyrillidis, Anastasios uhttps://arxiv.org/abs/1808.10786