01014nas a2200157 4500008004100000245007300041210006900114260001500183300001100198490000700209520054100216100001900757700002000776700002400796856003600820 2016 eng d00aYang-Baxter operators need quantum entanglement to distinguish knots0 aYangBaxter operators need quantum entanglement to distinguish kn c2016/01/12 a0752030 v493 a Any solution to the Yang-Baxter equation yields a family of representations
of braid groups. Under certain conditions, identified by Turaev, the
appropriately normalized trace of these representations yields a link
invariant. Any Yang-Baxter solution can be interpreted as a two-qudit quantum
gate. Here we show that if this gate is non-entangling, then the resulting
invariant of knots is trivial. We thus obtain a general connection between
topological entanglement and quantum entanglement, as suggested by Kauffman et
al.
1 aAlagic, Gorjan1 aJarret, Michael1 aJordan, Stephen, P. uhttp://arxiv.org/abs/1507.05979