@article {1197, title = {Topologically Protected Quantum State Transfer in a Chiral Spin Liquid}, journal = {Nature Communications}, volume = {4}, year = {2013}, month = {2013/3/12}, pages = {1585}, abstract = { Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed. }, doi = {10.1038/ncomms2531}, url = {http://arxiv.org/abs/1110.3788v1}, author = {Norman Y. Yao and Chris R. Laumann and Alexey V. Gorshkov and Hendrik Weimer and Liang Jiang and J. Ignacio Cirac and Peter Zoller and Mikhail D. Lukin} } @article {1200, title = {Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor }, journal = {Nature Communications}, volume = {3}, year = {2012}, month = {2012/4/24}, pages = {800}, abstract = { The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Much progress has been made towards this goal. Indeed, quantum operations have been demonstrated on several trapped ion qubits, and other solid-state systems are approaching similar levels of control. Extending these techniques to achieve fault-tolerant operations in larger systems with more qubits remains an extremely challenging goal, in part, due to the substantial technical complexity of current implementations. Here, we propose and analyze an architecture for a scalable, solid-state quantum information processor capable of operating at or near room temperature. The architecture is applicable to realistic conditions, which include disorder and relevant decoherence mechanisms, and includes a hierarchy of control at successive length scales. Our approach is based upon recent experimental advances involving Nitrogen-Vacancy color centers in diamond and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems. Additionally, the proposed architecture may greatly alleviate the stringent constraints, currently limiting the realization of scalable quantum processors. }, doi = {10.1038/ncomms1788}, url = {http://arxiv.org/abs/1012.2864v1}, author = {Norman Y. Yao and Liang Jiang and Alexey V. Gorshkov and Peter C. Maurer and Geza Giedke and J. Ignacio Cirac and Mikhail D. Lukin} }