@article {1470, title = {Steady-state many-body entanglement of hot reactive fermions}, journal = {Physical Review Letters}, volume = {109}, year = {2012}, month = {2012/12/4}, abstract = { Entanglement is typically created via systematic intervention in the time evolution of an initially unentangled state, which can be achieved by coherent control, carefully tailored non-demolition measurements, or dissipation in the presence of properly engineered reservoirs. In this paper we show that two-component Fermi gases at ~\mu K temperatures naturally evolve, in the presence of reactive two-body collisions, into states with highly entangled (Dicke-type) spin wavefunctions. The entanglement is a steady-state property that emerges---without any intervention---from uncorrelated initial states, and could be used to improve the accuracy of spectroscopy in experiments with fermionic alkaline earth atoms or fermionic groundstate molecules. }, doi = {10.1103/PhysRevLett.109.230501}, url = {http://arxiv.org/abs/1207.4741v1}, author = {Michael Foss-Feig and Andrew J. Daley and James K. Thompson and Ana Maria Rey} } @article {1193, title = {Alkaline-Earth-Metal Atoms as Few-Qubit Quantum Registers}, journal = {Physical Review Letters}, volume = {102}, year = {2009}, month = {2009/3/18}, abstract = { We propose and analyze a novel approach to quantum information processing, in which multiple qubits can be encoded and manipulated using electronic and nuclear degrees of freedom associated with individual alkaline-earth atoms trapped in an optical lattice. Specifically, we describe how the qubits within each register can be individually manipulated and measured with sub-wavelength optical resolution. We also show how such few-qubit registers can be coupled to each other in optical superlattices via conditional tunneling to form a scalable quantum network. Finally, potential applications to quantum computation and precision measurements are discussed. }, doi = {10.1103/PhysRevLett.102.110503}, url = {http://arxiv.org/abs/0812.3660v2}, author = {Alexey V. Gorshkov and Ana Maria Rey and Andrew J. Daley and Martin M. Boyd and Jun Ye and Peter Zoller and Mikhail D. Lukin} }