@article {1835, title = {Multicritical behavior in dissipative {I}sing models}, journal = {Physical Review A}, volume = {95}, year = {2017}, month = {2017/04/26}, pages = {042133}, abstract = {

We analyze theoretically the many-body dynamics of a dissipative Ising model in a transverse field using a variational approach. We find that the steady state phase diagram is substantially modified compared to its equilibrium counterpart, including the appearance of a multicritical point belonging to a different universality class. Building on our variational analysis, we establish a field-theoretical treatment corresponding to a dissipative variant of a Ginzburg-Landau theory, which allows us to compute the upper critical dimension of the system. Finally, we present a possible experimental realization of the dissipative Ising model using ultracold Rydberg gases.

}, doi = {doi.org/10.1103/PhysRevA.95.042133}, url = {https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.042133}, author = {Vincent R. Overbeck and Mohammad F. Maghrebi and Alexey V. Gorshkov and Hendrik Weimer} } @article {1186, title = {Controllable quantum spin glasses with magnetic impurities embedded in quantum solids }, journal = {Physical Review B}, volume = {88}, year = {2013}, month = {2013/7/24}, abstract = { Magnetic impurities embedded in inert solids can exhibit long coherence times and interact with one another via their intrinsic anisotropic dipolar interaction. We argue that, as a consequence of these properties, disordered ensembles of magnetic impurities provide an effective platform for realizing a controllable, tunable version of the dipolar quantum spin glass seen in LiHo$_x$Y$_{1-x}$F$_4$. Specifically, we propose and analyze a system composed of dysprosium atoms embedded in solid helium. We describe the phase diagram of the system and discuss the realizability and detectability of the quantum spin glass and antiglass phases. }, doi = {10.1103/PhysRevB.88.014426}, url = {http://arxiv.org/abs/1307.1130v1}, author = {Mikhail Lemeshko and Norman Y. Yao and Alexey V. Gorshkov and Hendrik Weimer and Steven D. Bennett and Takamasa Momose and Sarang Gopalakrishnan} } @article {1197, title = {Topologically Protected Quantum State Transfer in a Chiral Spin Liquid}, journal = {Nature Communications}, volume = {4}, year = {2013}, month = {2013/3/12}, pages = {1585}, abstract = { Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed. }, doi = {10.1038/ncomms2531}, url = {http://arxiv.org/abs/1110.3788v1}, author = {Norman Y. Yao and Chris R. Laumann and Alexey V. Gorshkov and Hendrik Weimer and Liang Jiang and J. Ignacio Cirac and Peter Zoller and Mikhail D. Lukin} }