@article {2919, title = {Cross-Platform Comparison of Arbitrary Quantum Computations}, year = {2021}, month = {7/27/2021}, abstract = {

As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information for a single QC. On the other hand, a comparison between different QCs on the same arbitrary circuit provides a lower-bound for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform fidelities.

}, url = {https://arxiv.org/abs/2107.11387}, author = {Daiwei Zhu and Ze-Pei Cian and Crystal Noel and Andrew Risinger and Debopriyo Biswas and Laird Egan and Yingyue Zhu and Alaina M. Green and Cinthia Huerta Alderete and Nhung H. Nguyen and Qingfeng Wang and Andrii Maksymov and Yunseong Nam and Marko Cetina and Norbert M. Linke and Mohammad Hafezi and Christopher Monroe} } @article {2821, title = {Efficient quantum programming using EASE gates on a trapped-ion quantum computer}, year = {2021}, month = {7/15/2021}, abstract = {

Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of parallel implementations of quantum gates for efficient quantum circuit implementations. Here, we focus on the recently invented efficient, arbitrary, simultaneously entangling (EASE) gates, available on a trapped-ion quantum computer. Leveraging its flexibility in selecting arbitrary pairs of qubits to be coupled with any degrees of entanglement, all in parallel, we show a n-qubit Clifford circuit can be implemented using 6log(n) EASE gates, a n-qubit multiply-controlled NOT gate can be implemented using 3n/2 EASE gates, and a n-qubit permutation can be implemented using six EASE gates. We discuss their implications to near-term quantum chemistry simulations and the state of the art pattern matching algorithm. Given Clifford + multiply-controlled NOT gates form a universal gate set for quantum computing, our results imply efficient quantum computation by EASE gates, in general.

}, url = {https://arxiv.org/abs/2107.07591}, author = {Nikodem Grzesiak and Andrii Maksymov and Pradeep Niroula and Yunseong Nam} }