@article {2567, title = {Exotic photonic molecules via Lennard-Jones-like potentials}, journal = {Phys. Rev. Lett.}, volume = {125}, year = {2020}, month = {9/19/2020}, abstract = {

Ultracold systems offer an unprecedented level of control of interactions between atoms. An important challenge is to achieve a similar level of control of the interactions between photons. Towards this goal, we propose a realization of a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT). This potential is achieved by tuning Rydberg states to a F{{\"o}}rster resonance with other Rydberg states. We consider few-body problems in 1D and 2D geometries and show the existence of self-bound clusters (\"molecules\") of photons. We demonstrate that for a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state. This leads to phenomena without counterparts in conventional systems: For example, three photons in 2D preferentially arrange themselves in a line-configuration rather than in an equilateral-triangle configuration. Our result opens a new avenue for studies of many-body phenomena with strongly interacting photons.

}, doi = {https://doi.org/10.1103/PhysRevLett.125.093601}, url = {https://arxiv.org/abs/2003.07864}, author = {Przemyslaw Bienias and Michael Gullans and Marcin Kalinowski and Alexander N. Craddock and Dalia P. Ornelas-Huerta and Steven L. Rolston and J. V. Porto and Alexey V. Gorshkov} } @article {2568, title = {On-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble}, year = {2020}, month = {3/4/2020}, abstract = {

Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), g(2)=2.0(1.5)\×10\−4, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources.\ 

}, url = {https://arxiv.org/abs/2003.02202}, author = {Dalia P. Ornelas-Huerta and Alexander N. Craddock and Elizabeth A. Goldschmidt and Andrew J. Hachtel and Yidan Wang and P. Bienias and Alexey V. Gorshkov and Steve L. Rolston and James V. Porto} } @article {2681, title = {Resonant enhancement of three-body loss between strongly interacting photons}, year = {2020}, month = {10/19/2020}, abstract = {

Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions. The three-body interactions can be either dispersive or dissipative, with both types possibly giving rise to exotic, strongly-interacting, and topological phases of matter. Despite past theoretical and experimental studies of the regime with dispersive interaction, the dissipative regime is still mostly unexplored. Using a renormalization group technique to solve the three-body Schr{\"o}dinger equation, we show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons. We demonstrate how these interactions relate to the transmission through a single-mode cavity, which can be used as a probe of the three-body physics in current experiment

}, url = {https://arxiv.org/abs/2010.09772}, author = {Marcin Kalinowski and Yidan Wang and Przemyslaw Bienias and Michael Gullans and Dalia P. Ornelas-Huerta and Alexander N. Craddock and Steven L. Rolston and J. V. Porto and Hans Peter B{\"u}chler and Alexey V. Gorshkov} }