Quantum error correction and symmetry arise in many areas of physics, including many-body systems, metrology in the presence of noise, fault-tolerant computation, and holographic quantum gravity. Here we study the compatibility of these two important principles. If a logical quantum system is encoded into n physical subsystems, we say that the code is covariant with respect to a symmetry group G if a G transformation on the logical system can be realized by performing transformations on the individual subsystems. For a G-covariant code with G a continuous group, we derive a lower bound on the error correction infidelity following erasure of a subsystem. This bound approaches zero when the number of subsystems n or the dimension d of each subsystem is large. We exhibit codes achieving approximately the same scaling of infidelity with n or d as the lower bound. Leveraging tools from representation theory, we prove an approximate version of the Eastin-Knill theorem: If a code admits a universal set of transversal gates and corrects erasure with fixed accuracy, then, for each logical qubit, we need a number of physical qubits per subsystem that is inversely proportional to the error parameter. We construct codes covariant with respect to the full logical unitary group, achieving good accuracy for large d (using random codes) or n (using codes based on W-states). We systematically construct codes covariant with respect to general groups, obtaining natural generalizations of qubit codes to, for instance, oscillators and rotors. In the context of the AdS/CFT correspondence, our approach provides insight into how time evolution in the bulk corresponds to time evolution on the boundary without violating the Eastin-Knill theorem, and our five-rotor code can be stacked to form a covariant holographic code.

}, doi = {https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.041018}, url = {https://arxiv.org/abs/1902.07714}, author = {Philippe Faist and Sepehr Nezami and Victor V. Albert and Grant Salton and Fernando Pastawski and Patrick Hayden and John Preskill} } @article {2490, title = {Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes}, year = {2019}, month = {2019/11/14}, abstract = {With the long-term goal of studying quantum gravity in the lab, we propose holographic teleportation protocols that can be readily executed in table-top experiments. These protocols exhibit similar behavior to that seen in recent traversable wormhole constructions: information that is scrambled into one half of an entangled system will, following a weak coupling between the two halves, unscramble into the other half. We introduce the concept of \"teleportation by size\" to capture how the physics of operator-size growth naturally leads to information transmission. The transmission of a signal through a semi-classical holographic wormhole corresponds to a rather special property of the operator-size distribution we call \"size winding\". For more general setups (which may not have a clean emergent geometry), we argue that imperfect size winding is a generalization of the traversable wormhole phenomenon. For example, a form of signalling continues to function at high temperature and at large times for generic chaotic systems, even though it does not correspond to a signal going through a geometrical wormhole, but rather to an interference effect involving macroscopically different emergent geometries. Finally, we outline implementations feasible with current technology in two experimental platforms: Rydberg atom arrays and trapped ions.\

}, url = {https://arxiv.org/abs/1911.06314}, author = {Adam R. Brown and Hrant Gharibyan and Stefan Leichenauer and Henry W. Lin and Sepehr Nezami and Grant Salton and Leonard Susskind and Brian Swingle and Michael Walter} }