@article {2631, title = {Device-independent Randomness Expansion with Entangled Photons}, journal = {Nat. Phys. }, year = {2021}, month = {01/28/2021}, abstract = {

With the growing availability of experimental loophole-free Bell tests, it has become possible to implement a new class of device-independent random number generators whose output can be certified to be uniformly random without requiring a detailed model of the quantum devices used. However, all of these experiments require many input bits in order to certify a small number of output bits, and it is an outstanding challenge to develop a system that generates more randomness than is used. Here, we devise a device-independent spot-checking protocol which uses only uniform bits as input. Implemented with a photonic loophole-free Bell test, we can produce 24\% more certified output bits (1,181,264,237) than consumed input bits (953,301,640), which is 5 orders of magnitude more efficient than our previous work [arXiv:1812.07786]. The experiment ran for 91.0 hours, creating randomness at an average rate of 3606 bits/s with a soundness error bounded by 5.7\×10\−7 in the presence of classical side information. Our system will allow for greater trust in public sources of randomness, such as randomness beacons, and the protocols may one day enable high-quality sources of private randomness as the device footprint shrinks.

}, doi = {https://doi.org/10.1038/s41567-020-01153-4}, url = {https://arxiv.org/abs/1912.11158}, author = {Lynden K. Shalm and Yanbao Zhang and Joshua C. Bienfang and Collin Schlager and Martin J. Stevens and Michael D. Mazurek and Carlos Abell{\'a}n and Waldimar Amaya and Morgan W. Mitchell and Mohammad A. Alhejji and Honghao Fu and Joel Ornstein and Richard P. Mirin and Sae Woo Nam and Emanuel Knill} } @article {2329, title = {Experimental Low-Latency Device-Independent Quantum Randomness}, journal = {Phys. Rev. Lett. }, volume = {124}, year = {2020}, month = {12/24/2019}, abstract = {

Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of 512 bits with an average experiment time of less than 5 min per block and with certified error bounded by 2\−64\≈5.42\×10\−20.

}, doi = {https://doi.org/10.1103/PhysRevLett.124.010505}, url = {https://arxiv.org/abs/1812.07786}, author = {Yanbao Zhang and Lynden K. Shalm and Joshua C. Bienfang and Martin J. Stevens and Michael D. Mazurek and Sae Woo Nam and Carlos Abell{\'a}n and Waldimar Amaya and Morgan W. Mitchell and Honghao Fu and Carl Miller and Alan Mink and Emanuel Knill} }