@article {1816, title = {Valley Blockade in a Silicon Double Quantum Dot}, journal = {Physical Review B}, volume = {96}, year = {2017}, month = {2017/11/13}, pages = {205302}, abstract = {

Electrical transport in double quantum dots (DQDs) illuminates many interesting features of the dots\&$\#$39; carrier states. Recent advances in silicon quantum information technologies have renewed interest in the valley states of electrons confined in silicon. Here we show measurements of DC transport through a mesa-etched silicon double quantum dot. Comparing bias triangles (i.e., regions of allowed current in DQDs) at positive and negative bias voltages we find a systematic asymmetry in the size of the bias triangles at the two bias polarities. Asymmetries of this nature are associated with blocking of tunneling events due to the occupation of a metastable state. Several features of our data lead us to conclude that the states involved are not simple spin states. Rather, we develop a model based on selective filling of valley states in the DQD that is consistent with all of the qualitative features of our data.

}, doi = {10.1103/PhysRevB.96.205302}, url = {https://arxiv.org/abs/1607.06107}, author = {Justin K. Perron and Michael Gullans and J. M. Taylor and M. D. Stewart, Jr. and Neil M. Zimmerman} }