@article {1263, title = {Exponential algorithmic speedup by quantum walk}, year = {2002}, month = {2002/09/24}, abstract = { We construct an oracular (i.e., black box) problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our oracular setting. We then show how this quantum walk can be used to solve our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve this problem with high probability in subexponential time. }, doi = {10.1145/780542.780552}, url = {http://arxiv.org/abs/quant-ph/0209131v2}, author = {Andrew M. Childs and Richard Cleve and Enrico Deotto and Edward Farhi and Sam Gutmann and Daniel A. Spielman} } @article {1262, title = {Quantum search by measurement}, journal = {Physical Review A}, volume = {66}, year = {2002}, month = {2002/9/23}, abstract = { We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of measurements. The algorithm is similar in spirit to quantum computation by adiabatic evolution, in that the goal is to remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two algorithms are closely related. We also show how to achieve the quadratic speedup for Grover{\textquoteright}s unstructured search problem with only two measurements. Finally, we discuss some similarities and differences between the adiabatic and measurement algorithms. }, doi = {10.1103/PhysRevA.66.032314}, url = {http://arxiv.org/abs/quant-ph/0204013v1}, author = {Andrew M. Childs and Enrico Deotto and Edward Farhi and Jeffrey Goldstone and Sam Gutmann and Andrew J. Landahl} }