@article {1772, title = {Self-organization of atoms coupled to a chiral reservoir}, journal = {Physical Review A}, volume = {94}, year = {2016}, month = {2016/11/29}, pages = {053855}, abstract = {

Tightly confined modes of light, as in optical nanofibers or photonic crystal waveguides, can lead to large optical coupling in atomic systems, which mediates long-range interactions between atoms. These one-dimensional systems can naturally possess couplings that are asymmetric between modes propagating in different directions. Strong long-range interaction among atoms via these modes can drive them to a self-organized periodic distribution. In this paper, we examine the self-organizing behavior of atoms in one dimension coupled to a chiral reservoir. We determine the solution to the equations of motion in different parameter regimes, relative to both the detuning of the pump laser that initializes the atomic dipole-dipole interactions and the degree of reservoir chirality. In addition, we calculate possible experimental signatures such as reflectivity from self-organized atoms and motional sidebands.

}, doi = {10.1103/PhysRevA.94.053855}, url = {http://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.053855}, author = {Zachary Eldredge and Pablo Solano and Darrick Chang and Alexey V. Gorshkov} }