@article {1195, title = {Realization of Coherent Optically Dense Media via Buffer-Gas Cooling}, journal = {Physical Review A}, volume = {79}, year = {2009}, month = {2009/1/6}, abstract = { We demonstrate that buffer-gas cooling combined with laser ablation can be used to create coherent optical media with high optical depth and low Doppler broadening that offers metastable states with low collisional and motional decoherence. Demonstration of this generic technique opens pathways to coherent optics with a large variety of atoms and molecules. We use helium buffer gas to cool 87Rb atoms to below 7 K and slow atom diffusion to the walls. Electromagnetically induced transparency (EIT) in this medium allows for 50\% transmission in a medium with initial OD >70 and for slow pulse propagation with large delay-bandwidth products. In the high-OD regime, we observe high-contrast spectrum oscillations due to efficient four-wave mixing. }, doi = {10.1103/PhysRevA.79.013806}, url = {http://arxiv.org/abs/0805.1416v2}, author = {Tao Hong and Alexey V. Gorshkov and David Patterson and Alexander S. Zibrov and John M. Doyle and Mikhail D. Lukin and Mara G. Prentiss} }