@article {1190, title = {Bilayer fractional quantum Hall states with ultracold dysprosium}, journal = {Physical Review A}, volume = {92}, year = {2015}, month = {2015/09/10}, pages = {033609}, abstract = { We show how dipolar interactions between dysprosium atoms in an optical lattice can be used to obtain fractional quantum Hall states. In our approach, dysprosium atoms are trapped one atom per site in a deep optical lattice with negligible tunneling. Microwave and spatially dependent optical dressing fields are used to define an effective spin-1/2 or spin-1 degree of freedom in each atom. Thinking of spin-1/2 particles as hardcore bosons, dipole-dipole interactions give rise to boson hopping, topological flat bands with Chern number 1, and the \nu = 1/2 Laughlin state. Thinking of spin-1 particles as two-component hardcore bosons, dipole-dipole interactions again give rise to boson hopping, topological flat bands with Chern number 2, and the bilayer Halperin (2,2,1) state. By adjusting the optical fields, we find a phase diagram, in which the (2,2,1) state competes with superfluidity. Generalizations to solid-state magnetic dipoles are discussed. }, doi = {10.1103/PhysRevA.92.033609}, url = {http://arxiv.org/abs/1505.03099v1}, author = {Norman Y. Yao and Steven D. Bennett and Chris R. Laumann and Benjamin L. Lev and Alexey V. Gorshkov} }