@article {1179, title = {Causality and quantum criticality with long-range interactions}, journal = {Physical Review B}, volume = {92}, year = {2016}, month = {2016/03/17}, pages = {125128}, abstract = { Quantum lattice systems with long-range interactions often exhibit drastically different behavior than their short-range counterparts. In particular, because they do not satisfy the conditions for the Lieb-Robinson theorem, they need not have an emergent relativistic structure in the form of a light cone. Adopting a field-theoretic approach, we study the one-dimensional transverse-field Ising model and a fermionic model with long-range interactions, explore their critical and near-critical behavior, and characterize their response to local perturbations. We deduce the dynamic critical exponent, up to the two-loop order within the renormalization group theory, which we then use to characterize the emergent causal behavior. We show that beyond a critical value of the power-law exponent of long-range interactions, the dynamics effectively becomes relativistic. Various other critical exponents describing correlations in the ground state, as well as deviations from a linear causal cone, are deduced for a wide range of the power-law exponent. }, doi = {10.1103/PhysRevB.93.125128}, url = {http://arxiv.org/abs/1508.00906}, author = {Mohammad F. Maghrebi and Zhe-Xuan Gong and Michael Foss-Feig and Alexey V. Gorshkov} }