Title | Wannier functions using a discrete variable representation for optical lattices |

Publication Type | Journal Article |

Year of Publication | 2016 |

Authors | Paul, S, Tiesinga, E |

Journal | Physical Review A |

Volume | 94 |

Issue | 3 |

Pages | 033606 |

Date Published | 2016/09/07 |

Abstract | We propose a numerical method using the discrete variable representation (DVR) for constructing real-valued Wannier functions localized in a unit cell for both symmetric and asymmetric periodic potentials. We apply these results to finding Wannier functions for ultracold atoms trapped in laser-generated optical lattices. Following S. Kivelson [Phys. Rev. B 26, 4269 (1982)], for a symmetric lattice with inversion symmetry, we construct Wannier functions as eigenstates of the position operators xˆ, yˆ, and zˆ restricted to single-particle Bloch functions belonging to one or more bands. To ensure that the Wannier functions are real-valued, we numerically obtain the band structure and real-valued eigenstates using a uniform Fourier grid DVR. We then show, by a comparison of tunneling energies, that the Wannier functions are accurate for both inversion-symmetric and asymmetric potentials to better than 10 significant digits when using double-precision arithmetic. The calculations are performed for an optical lattice with double-wells per unit cell with tunable asymmetry along the x axis and a single sinusoidal potential along the perpendicular directions. Localized functions at the two potential minima within each unit cell are similarly constructed, but using a superposition of single-particle solutions from the two lowest bands. We finally use these localized basis functions to determine the two-body interaction energies in the Bose-Hubbard model and show the dependence of these energies on lattice asymmetry. |

URL | http://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.033606 |

DOI | 10.1103/PhysRevA.94.033606 |