Quantum computational advantage via high-dimensional Gaussian boson sampling

TitleQuantum computational advantage via high-dimensional Gaussian boson sampling
Publication TypeJournal Article
Year of Publication2022
AuthorsDeshpande, A, Mehta, A, Vincent, T, Quesada, N, Hinsche, M, Ioannou, M, Madsen, L, Lavoie, J, Qi, H, Eisert, J, Hangleiter, D, Fefferman, B, Dhand, I
JournalScience Advances
Date Published1/5/2022

A programmable quantum computer based on fiber optics outperforms classical computers with a high level of confidence. Photonics is a promising platform for demonstrating a quantum computational advantage (QCA) by outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing proposals and demonstrations face challenges. Experimentally, current implementations of Gaussian boson sampling (GBS) lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of GBS. In this work, we make progress in improving both the theoretical evidence and experimental prospects. We provide evidence for the hardness of GBS, comparable to the strongest theoretical proposals for QCA. We also propose a QCA architecture we call high-dimensional GBS, which is programmable and can be implemented with low loss using few optical components. We show that particular algorithms for simulating GBS are outperformed by high-dimensional GBS experiments at modest system sizes. This work thus opens the path to demonstrating QCA with programmable photonic processors.