Light-induced fractional quantum Hall phases in graphene

TitleLight-induced fractional quantum Hall phases in graphene
Publication TypeJournal Article
Year of Publication2017
AuthorsGhazaryan, A, Graß, T, Gullans, M, Ghaemi, P, Hafezi, M
JournalPhysical Review Letters
Date Published2017/12/15

We show how to realize two-component fractional quantum Hall phases in monolayer graphene by optically driving the system. A laser is tuned into resonance between two Landau levels, giving rise to an effective tunneling between these two synthetic layers. Remarkably, because of this coupling, the interlayer interaction at non-zero relative angular momentum can become dominant, resembling a hollow-core pseudo-potential. In the weak tunneling regime, this interaction favors the formation of singlet states, as we explicitly show by numerical diagonalization, at fillings ν = 1/2 and ν = 2/3. We discuss possible candidate phases, including the Haldane-Rezayi phase, the interlayer Pfaffian phase, and a Fibonacci phase. This demonstrates that our method may pave the way towards the realization of non-Abelian phases, as well as the control of topological phase transitions, in graphene quantum Hall systems using optical fields and integrated photonic structures.