Anomalous broadening in driven dissipative Rydberg systems
Abstract
We observe interaction-induced broadening of the two-photon 5s-18s transition in Rb-87 atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with blackbody induced population in nearby np states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms.
Publication Details
- Authors
- Publication Type
- Journal Article
- Year of Publication
- 2016
- Journal
- Physical Review Letters
- Volume
- 116
- Date Published
- 03/2016