Publications

Export 746 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Y
W. - X. Yang and Gong, Z. - X., Efficient scheme for one-way quantum computing in thermal cavities, International Journal of Theoretical Physics, vol. 47, no. 11, pp. 2997 - 3004, 2008.
N. Y. Yao, Jiang, L., Gorshkov, A. V., Maurer, P. C., Giedke, G., J. Cirac, I., and Lukin, M. D., Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor , Nature Communications, vol. 3, p. 800, 2012.
N. Y. Yao, Bennett, S. D., Laumann, C. R., Lev, B. L., and Gorshkov, A. V., Bilayer fractional quantum Hall states with ultracold dysprosium, Physical Review A, vol. 92, no. 3, p. 033609, 2015.
N. Y. Yao, Gong, Z. - X., Laumann, C. R., Bennett, S. D., Duan, L. - M., Lukin, M. D., Jiang, L., and Gorshkov, A. V., Quantum Logic between Remote Quantum Registers, Physical Review A, vol. 87, no. 2, 2013.
N. Y. Yao, Gorshkov, A. V., Laumann, C. R., Läuchli, A. M., Ye, J., and Lukin, M. D., Realizing Fractional Chern Insulators with Dipolar Spins, Physical Review Letters, vol. 110, no. 18, 2013.
N. Y. Yao, Laumann, C. R., Gorshkov, A. V., Weimer, H., Jiang, L., J. Cirac, I., Zoller, P., and Lukin, M. D., Topologically Protected Quantum State Transfer in a Chiral Spin Liquid, Nature Communications, vol. 4, p. 1585, 2013.
N. Y. Yao, Laumann, C. R., Gorshkov, A. V., Bennett, S. D., Demler, E., Zoller, P., and Lukin, M. D., Topological Flat Bands from Dipolar Spin Systems, Physical Review Letters, vol. 109, no. 26, 2012.
N. Y. Yao, Jiang, L., Gorshkov, A. V., Gong, Z. - X., Zhai, A., Duan, L. - M., and Lukin, M. D., Robust Quantum State Transfer in Random Unpolarized Spin Chains, Physical Review Letters, vol. 106, no. 4, 2011.
J. T. Young, Gorshkov, A. V., Foss-Feig, M., and Maghrebi, M. F., Non-equilibrium fixed points of coupled Ising models, 2019.
J. T. Young, Boulier, T., Magnan, E., Goldschmidt, E. A., Wilson, R. M., Rolston, S. L., Porto, J. V., and Gorshkov, A. V., Dissipation induced dipole blockade and anti-blockade in driven Rydberg systems, Phys. Rev. A, vol. 97, p. 023424, 2018.
R. Yousefzadeh and O'Leary, D. P., Interpreting Neural Networks Using Flip Points, 2019.
Z
D. M. Zajac, Sigillito, A. J., Russ, M., Borjans, F., Taylor, J. M., Burkard, G., and Petta, J. R., Resonantly driven CNOT gate for electron spins, Science, vol. 359, no. 6374, pp. 439-442, 2018.
E. Zeuthen, Schliesser, A., Sørensen, A. S., and Taylor, J. M., Figures of merit for quantum transducers, 2016.
E. Zeuthen, Schliesser, A., Taylor, J. M., and Sørensen, A. S., Electro-optomechanical equivalent circuits for quantum transduction, 2018.
E. Zeuthen, Gullans, M., Maghrebi, M. F., and Gorshkov, A. V., Correlated Photon Dynamics in Dissipative Rydberg Media, Physical Review Letters, vol. 119, no. 4, p. 043602, 2017.
B. Zhan, Kimmel, S., and Hassidim, A., Super-Polynomial Quantum Speed-ups for Boolean Evaluation Trees with Hidden Structure, ITCS '12 Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 249-265, 2012.
Y. Zhang, Shalm, L. K., Bienfang, J. C., Stevens, M. J., Mazurek, M. D., Nam, S. Woo, Abellán, C., Amaya, W., Mitchell, M. W., Fu, H., Miller, C. A., Mink, A., and Knill, E., Experimental Low-Latency Device-Independent Quantum Randomness, 2018.
J. Zhang, Pagano, G., Hess, P. W., Kyprianidis, A., Becker, P., Kaplan, H., Gorshkov, A. V., Gong, Z. - X., and Monroe, C., Observation of a Many-Body Dynamical Phase Transition with a 53-Qubit Quantum Simulator, Nature, vol. 551, pp. 601-604, 2017.
E. Zhao, Bray-Ali, N., Williams, C. J., Spielman, I. B., and Satija, I. I., Chern numbers hiding in time-of-flight images, Physical Review A, vol. 84, no. 6, 2011.
B. Zhu, Gadway, B., Foss-Feig, M., Schachenmayer, J., Wall, M., Hazzard, K. R. A., Yan, B., Moses, S. A., Covey, J. P., Jin, D. S., Ye, J., Holland, M., and Rey, A. Maria, Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect , Physical Review Letters, vol. 112, no. 7, 2014.
J. P. Zwolak, Kalantre, S. S., Wu, X., Ragole, S., and Taylor, J. M., QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments, PLOS ONE, vol. 13, no. 10, p. e0205844, 2018.