%0 Journal Article
%J Physical Review Letters
%D 2014
%T Many-body dynamics of dipolar molecules in an optical lattice
%A Kaden R. A. Hazzard
%A Bryce Gadway
%A Michael Foss-Feig
%A Bo Yan
%A Steven A. Moses
%A Jacob P. Covey
%A Norman Y. Yao
%A Mikhail D. Lukin
%A Jun Ye
%A Deborah S. Jin
%A Ana Maria Rey
%X Understanding the many-body dynamics of isolated quantum systems is one of the central challenges in modern physics. To this end, the direct experimental realization of strongly correlated quantum systems allows one to gain insights into the emergence of complex phenomena. Such insights enable the development of theoretical tools that broaden our understanding. Here, we theoretically model and experimentally probe with Ramsey spectroscopy the quantum dynamics of disordered, dipolar-interacting, ultracold molecules in a partially filled optical lattice. We report the capability to control the dipolar interaction strength, and we demonstrate that the many-body dynamics extends well beyond a nearest-neighbor or mean-field picture, and cannot be quantitatively described using previously available theoretical tools. We develop a novel cluster expansion technique and demonstrate that our theoretical method accurately captures the measured dependence of the spin dynamics on molecule number and on the dipolar interaction strength. In the spirit of quantum simulation, this agreement simultaneously benchmarks the new theoretical method and verifies our microscopic understanding of the experiment. Our findings pave the way for numerous applications in quantum information science, metrology, and condensed matter physics.
%B Physical Review Letters
%V 113
%8 2014/11/7
%G eng
%U http://arxiv.org/abs/1402.2354v1
%N 19
%! Phys. Rev. Lett.
%R 10.1103/PhysRevLett.113.195302
%0 Journal Article
%J Physical Review Letters
%D 2014
%T Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect
%A Bihui Zhu
%A Bryce Gadway
%A Michael Foss-Feig
%A Johannes Schachenmayer
%A Michael Wall
%A Kaden R. A. Hazzard
%A Bo Yan
%A Steven A. Moses
%A Jacob P. Covey
%A Deborah S. Jin
%A Jun Ye
%A Murray Holland
%A Ana Maria Rey
%X We investigate theoretically the suppression of two-body losses when the on-site loss rate is larger than all other energy scales in a lattice. This work quantitatively explains the recently observed suppression of chemical reactions between two rotational states of fermionic KRb molecules confined in one-dimensional tubes with a weak lattice along the tubes [Yan et al., Nature 501, 521-525 (2013)]. New loss rate measurements performed for different lattice parameters but under controlled initial conditions allow us to show that the loss suppression is a consequence of the combined effects of lattice confinement and the continuous quantum Zeno effect. A key finding, relevant for generic strongly reactive systems, is that while a single-band theory can qualitatively describe the data, a quantitative analysis must include multiband effects. Accounting for these effects reduces the inferred molecule filling fraction by a factor of five. A rate equation can describe much of the data, but to properly reproduce the loss dynamics with a fixed filling fraction for all lattice parameters we develop a mean-field model and benchmark it with numerically exact time-dependent density matrix renormalization group calculations.
%B Physical Review Letters
%V 112
%8 2014/2/20
%G eng
%U http://arxiv.org/abs/1310.2221v2
%N 7
%! Phys. Rev. Lett.
%R 10.1103/PhysRevLett.112.070404