%0 Journal Article %J Physical Review Letters %D 2017 %T Light-induced fractional quantum Hall phases in graphene %A Areg Ghazaryan %A Tobias Graß %A Michael Gullans %A Pouyan Ghaemi %A Mohammad Hafezi %X

We show how to realize two-component fractional quantum Hall phases in monolayer graphene by optically driving the system. A laser is tuned into resonance between two Landau levels, giving rise to an effective tunneling between these two synthetic layers. Remarkably, because of this coupling, the interlayer interaction at non-zero relative angular momentum can become dominant, resembling a hollow-core pseudo-potential. In the weak tunneling regime, this interaction favors the formation of singlet states, as we explicitly show by numerical diagonalization, at fillings ν = 1/2 and ν = 2/3. We discuss possible candidate phases, including the Haldane-Rezayi phase, the interlayer Pfaffian phase, and a Fibonacci phase. This demonstrates that our method may pave the way towards the realization of non-Abelian phases, as well as the control of topological phase transitions, in graphene quantum Hall systems using optical fields and integrated photonic structures.

%B Physical Review Letters %V 119 %P 247403 %8 2017/12/15 %G eng %U https://arxiv.org/abs/1612.08748 %N 24 %R 10.1103/PhysRevLett.119.247403