The mechanical force from light – radiation pressure – provides an intrinsic nonlinear interaction. Consequently, optomechanical systems near their steady state, such as the canonical optical spring, can display non-analytic behavior as a function of external parameters. This non-analyticity, a key feature of thermodynamic phase transitions, suggests that there could be an effective thermodynamic description of optomechanical systems. Here we explicitly define the thermodynamic limit for optomechanical systems and derive a set of sufficient constraints on the system parameters as the mechanical system grows large. As an example, we show how these constraints can be satisfied in a system with Z2 symmetry and derive a free energy, allowing us to characterize this as an equilibrium phase transition.

%B Physical Review B %V 96 %P 184106 %8 2017/11/13 %G eng %U https://arxiv.org/abs/1707.05771 %N 18 %R 10.1103/PhysRevB.96.184106