TY - JOUR T1 - Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing JF - Physical Review A Y1 - 2011 A1 - Nathaniel B. Phillips A1 - Alexey V. Gorshkov A1 - Irina Novikova AB - We study the modification of a traditional electromagnetically induced transparency (EIT) stored light technique that includes both EIT and four-wave mixing (FWM) in an ensemble of hot Rb atoms. The standard treatment of light storage involves the coherent and reversible mapping of one photonic mode onto a collective spin coherence. It has been shown that unwanted, competing processes such as four-wave mixing are enhanced by EIT and can significantly modify the signal optical pulse propagation. We present theoretical and experimental evidence to indicate that while a Stokes field is indeed detected upon retrieval of the signal field, any information originally encoded in a seeded Stokes field is not independently preserved during the storage process. We present a simple model that describes the propagation dynamics of the fields and the impact of FWM on the spin wave. VL - 83 UR - http://arxiv.org/abs/1103.2131v1 CP - 6 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.83.063823 ER - TY - JOUR T1 - Optimal light storage in atomic vapor JF - Physical Review A Y1 - 2008 A1 - Nathaniel B. Phillips A1 - Alexey V. Gorshkov A1 - Irina Novikova AB - We study procedures for the optimization of efficiency of light storage and retrieval based on the dynamic form of electromagnetically induced transparency (EIT) in warm Rb vapor. We present a detailed analysis of two recently demonstrated optimization protocols: a time-reversal-based iteration procedure, which finds the optimal input signal pulse shape for any given control field, and a procedure based on the calculation of an optimal control field for any given signal pulse shape. We verify that the two procedures are consistent with each other, and that they both independently achieve the maximum memory efficiency for any given optical depth. We observe good agreement with theoretical predictions for moderate optical depths (<25), while at higher optical depths the experimental efficiency falls below the theoretically predicted values. We identify possible effects responsible for this reduction in memory efficiency. VL - 78 UR - http://arxiv.org/abs/0805.3348v1 CP - 2 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.78.023801 ER - TY - JOUR T1 - Optimal light storage with full pulse shape control JF - Physical Review A Y1 - 2008 A1 - Irina Novikova A1 - Nathaniel B. Phillips A1 - Alexey V. Gorshkov AB - We experimentally demonstrate optimal storage and retrieval of light pulses of arbitrary shape in atomic ensembles. By shaping auxiliary control pulses, we attain efficiencies approaching the fundamental limit and achieve precise retrieval into any predetermined temporal profile. Our techniques, demonstrated in warm Rb vapor, are applicable to a wide range of systems and protocols. As an example, we present their potential application to the creation of optical time-bin qubits and to controlled partial retrieval. VL - 78 UR - http://arxiv.org/abs/0805.1927v1 CP - 2 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.78.021802 ER - TY - JOUR T1 - Optimal control of light pulse storage and retrieval JF - Physical Review Letters Y1 - 2007 A1 - Irina Novikova A1 - Alexey V. Gorshkov A1 - David F. Phillips A1 - Anders S. Sorensen A1 - Mikhail D. Lukin A1 - Ronald L. Walsworth AB - We demonstrate experimentally a procedure to obtain the maximum efficiency for the storage and retrieval of light pulses in atomic media. The procedure uses time reversal to obtain optimal input signal pulse-shapes. Experimental results in warm Rb vapor are in good agreement with theoretical predictions and demonstrate a substantial improvement of efficiency. This optimization procedure is applicable to a wide range of systems. VL - 98 UR - http://arxiv.org/abs/quant-ph/0702266v1 CP - 24 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.98.243602 ER -