We study the holographic complexity of Einstein-Maxwell-Dilaton gravity using the recently proposed "complexity = volume" and "complexity = action" dualities. The model we consider has a ground state that is represented in the bulk via a so-called hyperscaling violating geometry. We calculate the action growth of the Wheeler-DeWitt patch of the corresponding black hole solution at non-zero temperature and find that, in the presence of violations of hyperscaling, there is a parametric enhancement of the action growth rate. We partially match this behavior to simple tensor network models which can capture aspects of hyperscaling violation. We also exhibit the switchback effect in complexity growth using shockwave geometries and comment on a subtlety of our action calculations when the metric is discontinuous at a null surface.

VL - 106 UR - https://arxiv.org/abs/1712.09826 U5 - https://doi.org/10.1007/JHEP09(2018)106 ER - TY - JOUR T1 - Recovery Map for Fermionic Gaussian Channels Y1 - 2018 A1 - Brian Swingle A1 - Yixu Wang AB -A recovery map effectively cancels the action of a quantum operation to a partial or full extent. We study the Petz recovery map in the case where the quantum channel and input states are fermionic and Gaussian. Gaussian states are convenient because they are totally determined by their covariance matrix and because they form a closed set under so-called Gaussian channels. Using a Grassmann representation of fermionic Gaussian maps, we show that the Petz recovery map is also Gaussian and determine it explicitly in terms of the covariance matrix of the reference state and the data of the channel. As a by-product, we obtain a formula for the fidelity between two fermionic Gaussian states. We also discuss subtleties arising from the singularities of the involved matrices.

UR - https://arxiv.org/abs/1811.04956 ER -