We investigate quantum algorithms for classification, a fundamental problem in machine learning, with provable guarantees. Given n d-dimensional data points, the state-of-the-art (and optimal) classical algorithm for training classifiers with constant margin runs in O~(n+d) time. We design sublinear quantum algorithms for the same task running in O~(n−−√+d−−√) time, a quadratic improvement in both n and d. Moreover, our algorithms use the standard quantization of the classical input and generate the same classical output, suggesting minimal overheads when used as subroutines for end-to-end applications. We also demonstrate a tight lower bound (up to poly-log factors) and discuss the possibility of implementation on near-term quantum machines. As a side result, we also give sublinear quantum algorithms for approximating the equilibria of n-dimensional matrix zero-sum games with optimal complexity Θ~(n−−√).

UR - https://arxiv.org/abs/1904.02276 ER - TY - JOUR T1 - Quantum algorithms and lower bounds for convex optimization Y1 - 2018 A1 - Shouvanik Chakrabarti A1 - Andrew M. Childs A1 - Tongyang Li A1 - Xiaodi Wu AB -While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function over an n-dimensional convex body using O~(n) queries to oracles that evaluate the objective function and determine membership in the convex body. This represents a quadratic improvement over the best-known classical algorithm. We also study limitations on the power of quantum computers for general convex optimization, showing that it requires Ω~(n−−√) evaluation queries and Ω(n−−√) membership queries.

UR - https://arxiv.org/abs/1809.01731 ER -