TY - JOUR T1 - Thermodynamic limits for optomechanical systems with conservative potentials JF - Physical Review B Y1 - 2017 A1 - Stephen Ragole A1 - Haitan Xu A1 - John Lawall A1 - J. M. Taylor AB -

The mechanical force from light – radiation pressure – provides an intrinsic nonlinear interaction. Consequently, optomechanical systems near their steady state, such as the canonical optical spring, can display non-analytic behavior as a function of external parameters. This non-analyticity, a key feature of thermodynamic phase transitions, suggests that there could be an effective thermodynamic description of optomechanical systems. Here we explicitly define the thermodynamic limit for optomechanical systems and derive a set of sufficient constraints on the system parameters as the mechanical system grows large. As an example, we show how these constraints can be satisfied in a system with Z2 symmetry and derive a free energy, allowing us to characterize this as an equilibrium phase transition.

VL - 96 U4 - 184106 UR - https://arxiv.org/abs/1707.05771 CP - 18 U5 - 10.1103/PhysRevB.96.184106 ER - TY - JOUR T1 - From membrane-in-the-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating JF - Annalen der Physik Y1 - 2015 A1 - Corey Stambaugh A1 - Haitan Xu A1 - Utku Kemiktarak A1 - J. M. Taylor A1 - John Lawall AB - We demonstrate a "membrane in the middle" optomechanical system using a silicon nitride membrane patterned as a subwavelength grating. The grating has a reflectivity of over 99.8%, effectively creating two sub-cavities, with free spectral ranges of 6 GHz, optically coupled via photon tunneling. Measurements of the transmission and reflection spectra show an avoided crossing where the two sub-cavities simultaneously come into resonance, with a frequency splitting of 54 MHz. We derive expressions for the lineshapes of the symmetric and antisymmetric modes at the avoided crossing, and infer the grating reflection, transmission, absorption, and scattering through comparison with the experimental data. VL - 527 U4 - 81 - 88 UR - http://arxiv.org/abs/1407.1709v1 CP - 1-2 J1 - ANNALEN DER PHYSIK U5 - 10.1002/andp.201400142 ER - TY - JOUR T1 - Observation of optomechanical buckling phase transitions Y1 - 2015 A1 - Haitan Xu A1 - Utku Kemiktarak A1 - Jingyun Fan A1 - Stephen Ragole A1 - John Lawall A1 - J. M. Taylor AB -

Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets, and potential exotic quantum materials. Mechanical systems, such as relays and buckling transition spring switches can yield similar stability by exploiting non-equilibrium phase transitions. Curiously, in the optical domain, observations of such phase transitions remain elusive. However, efforts to integrate optical and mechanical systems -- optomechanics -- suggest that a hybrid approach combining the quantum control of optical systems with the engineerability of mechanical systems may provide a new avenue for such explorations. Here we report the first observation of the buckling of an optomechanical system, in which transitions between stable mechanical states corresponding to both first- and second-order phase transitions are driven by varying laser power and detuning. Our results enable new applications in photonics and, given rapid progress in pushing optomechanical systems into the quantum regime, the potential for explorations of quantum phase transitions.

UR - http://arxiv.org/abs/1510.04971v1 ER -