TY - JOUR T1 - Cooling a harmonic oscillator by optomechanical modification of its bath JF - Physical Review Letters Y1 - 2017 A1 - Xunnong Xu A1 - Thomas Purdy A1 - J. M. Taylor AB -

Optomechanical systems show tremendous promise for high sensitivity sensing of forces and modification of mechanical properties via light. For example, similar to neutral atoms and trapped ions, laser cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce additional damping channel to mechanical motion, while keeping its thermal noise at the same level, and as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of temperature to quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an approach for simultaneously reducing the thermal load on a mechanical resonator while improving its quality factor. In essence, we use the optical interaction to dynamically modify the dominant damping mechanism, providing an optomechanically-induced effect analogous to a phononic band gap. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme.

VL - 118 U4 - 223602 UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.223602 U5 - doi.org/10.1103/PhysRevLett.118.223602 ER - TY - JOUR T1 - Dynamically induced robust phonon transport and chiral cooling in an optomechanical system JF - Nature Communications Y1 - 2017 A1 - Seunghwi Kim A1 - Xunnong Xu A1 - J. M. Taylor A1 - Gaurav Bahl AB -

The transport of sound and heat, in the form of phonons, has a fundamental material limit: disorder-induced scattering. In electronic and optical settings, introduction of chiral transport - in which carrier propagation exhibits broken parity symmetry - provides robustness against such disorder by preventing elastic backscattering. Here we experimentally demonstrate a path for achieving robust phonon transport even in the presence of material disorder, by dynamically inducing chirality through traveling-wave optomechanical coupling. Using this approach, we demonstrate dramatic optically-induced chiral transport for clockwise and counterclockwise phonons in a symmetric resonator. This induced chirality also enhances isolation from the thermal bath and leads to gain-free reduction of the intrinsic damping of the phonons. Surprisingly, this passive mechanism is also accompanied by a chiral reduction in heat load leading to a novel optical cooling of the mechanics. This technique has the potential to improve upon the fundamental thermal limits of resonant mechanical sensor, which cannot be otherwise attained through conventional optomechanical cooling.

VL - 8 U4 - 205 UR - https://arxiv.org/abs/1609.08674 U5 - 10.1038/s41467-017-00247-7 ER - TY - JOUR T1 - Optomechanically-induced chiral transport of phonons in one dimension Y1 - 2017 A1 - Xunnong Xu A1 - J. M. Taylor AB -

Non-reciprocal devices, with one-way transport properties, form a key component for isolating and controlling light in photonic systems. Optomechanical systems have emerged as a potential platform for optical non-reciprocity, due to ability of a pump laser to break time and parity symmetry in the system. Here we consider how the non-reciprocal behavior of light can also impact the transport of sound in optomechanical devices. We focus on the case of a quasi one dimensional optical ring resonator with many mechanical modes coupled to light via the acousto-optic effect. The addition of disorder leads to finite diffusion for phonon transport in the material, largely due to elastic backscattering between clockwise and counter-clockwise phonons. We show that a laser pump field, along with the assumption of high quality-factor, sideband-resolved optical resonances, suppresses the effects of disorder and leads to the emergence of chiral diffusion, with direction-dependent diffusion emerging in a bandwidth similar to the phase-matching bandwidth for Brillouin scattering. A simple diagrammatic theory connects the observation of reduced mechanical linewidths directly to the associated phonon diffusion properties, and helps explain recent experimental results.

UR - https://arxiv.org/abs/1701.02699 ER - TY - JOUR T1 - A quasi-mode theory of chiral phonons Y1 - 2016 A1 - Xunnong Xu A1 - Seunghwi Kim A1 - Gaurav Bahl A1 - J. M. Taylor AB -

The coherence properties of mechanical resonators are often limited by multiple unavoidable forms of loss -- including phonon-phonon and phonon-defect scattering -- which result in the scattering of sound into other resonant modes and into the phonon bath. Dynamic suppression of this scattering loss can lift constraints on device structure and can improve tolerance to defects in the material, even after fabrication. Inspired by recent experiments, here we introduce a model of phonon losses resulting from disorder in a whispering gallery mode resonator with acousto-optical coupling between optical and mechanical modes. We show that a typical elastic scattering mechanism of high quality factor (Q) mechanical modes flips the direction of phonon propagation via high-angle scattering, leading to damping into modes with the opposite parity. When the optical mode overlaps co-propagating high-Q and bulk mechanical modes, the addition of laser cooling via sideband-resolved damping of the mechanical mode of a chosen parity also damps and modifies the response of the bulk modes of the same parity. This, in turn, simultaneously improves the quality factor and reduces the thermal load of the counter-propagating high-Q modes, leading to the dynamical creation of a cold phononic shield. We compare our theoretical results to the recent experiments of Kim et al., and find quantitative agreement with our theory.

UR - https://arxiv.org/abs/1612.09240 ER - TY - JOUR T1 - Quantum Nonlinear Optics Near Optomechanical Instabilities JF - Physical Review A Y1 - 2015 A1 - Xunnong Xu A1 - Michael Gullans A1 - J. M. Taylor AB - Optomechanical systems provide a unique platform for observing quantum behavior of macroscopic objects. However, efforts towards realizing nonlinear behavior at the single photon level have been inhibited by the small size of the radiation pressure interaction. Here we show that it is not necessary to reach the single-photon strong-coupling regime in order to realize significant optomechanical nonlinearities. Instead, nonlinearities at the few quanta level can be achieved, even with weak-coupling, in a two-mode optomechanical system driven near instability. In this limit, we establish a new figure of merit for realizing strong nonlinearity which scales with the single-photon optomechanical coupling and the sideband resolution of the mechanical mode with respect to the cavity linewidth. We find that current devices based on optomechanical crystals, thought to be in the weak-coupling regime, can still achieve strong quantum nonlinearity; enabling deterministic interactions between single photons. VL - 91 U4 - 013818 UR - http://arxiv.org/abs/1404.3726v2 CP - 1 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.91.013818 ER -