TY - JOUR T1 - Estimation of Hamiltonian parameters from thermal states Y1 - 2024 A1 - Luis Pedro García-Pintos A1 - Kishor Bharti A1 - Jacob Bringewatt A1 - Hossein Dehghani A1 - Adam Ehrenberg A1 - Nicole Yunger Halpern A1 - Alexey V. Gorshkov AB -

We upper- and lower-bound the optimal precision with which one can estimate an unknown Hamiltonian parameter via measurements of Gibbs thermal states with a known temperature. The bounds depend on the uncertainty in the Hamiltonian term that contains the parameter and on the term's degree of noncommutativity with the full Hamiltonian: higher uncertainty and commuting operators lead to better precision. We apply the bounds to show that there exist entangled thermal states such that the parameter can be estimated with an error that decreases faster than 1/n−−√, beating the standard quantum limit. This result governs Hamiltonians where an unknown scalar parameter (e.g. a component of a magnetic field) is coupled locally and identically to n qubit sensors. In the high-temperature regime, our bounds allow for pinpointing the optimal estimation error, up to a constant prefactor. Our bounds generalize to joint estimations of multiple parameters. In this setting, we recover the high-temperature sample scaling derived previously via techniques based on quantum state discrimination and coding theory. In an application, we show that noncommuting conserved quantities hinder the estimation of chemical potentials.

UR - https://arxiv.org/abs/2401.10343 ER - TY - JOUR T1 - Accelerating Progress Towards Practical Quantum Advantage: The Quantum Technology Demonstration Project Roadmap Y1 - 2023 A1 - Paul Alsing A1 - Phil Battle A1 - Joshua C. Bienfang A1 - Tammie Borders A1 - Tina Brower-Thomas A1 - Lincoln D. Carr A1 - Fred Chong A1 - Siamak Dadras A1 - Brian DeMarco A1 - Ivan Deutsch A1 - Eden Figueroa A1 - Danna Freedman A1 - Henry Everitt A1 - Daniel Gauthier A1 - Ezekiel Johnston-Halperin A1 - Jungsang Kim A1 - Mackillo Kira A1 - Prem Kumar A1 - Paul Kwiat A1 - John Lekki A1 - Anjul Loiacono A1 - Marko Lončar A1 - John R. Lowell A1 - Mikhail Lukin A1 - Celia Merzbacher A1 - Aaron Miller A1 - Christopher Monroe A1 - Johannes Pollanen A1 - David Pappas A1 - Michael Raymer A1 - Ronald Reano A1 - Brandon Rodenburg A1 - Martin Savage A1 - Thomas Searles A1 - Jun Ye AB -

Quantum information science and technology (QIST) is a critical and emerging technology with the potential for enormous world impact and is currently invested in by over 40 nations. To bring these large-scale investments to fruition and bridge the lower technology readiness levels (TRLs) of fundamental research at universities to the high TRLs necessary to realize the promise of practical quantum advantage accessible to industry and the public, we present a roadmap for Quantum Technology Demonstration Projects (QTDPs). Such QTDPs, focused on intermediate TRLs, are large-scale public-private partnerships with a high probability of translation from laboratory to practice. They create technology demonstrating a clear 'quantum advantage' for science breakthroughs that are user-motivated and will provide access to a broad and diverse community of scientific users. Successful implementation of a program of QTDPs will have large positive economic impacts.

UR - https://arxiv.org/abs/2210.14757 ER - TY - JOUR T1 - Advantages and limitations of quantum routing JF - PRX Quantum Y1 - 2023 A1 - Bapat, Aniruddha A1 - Andrew M. Childs A1 - Alexey V. Gorshkov A1 - Schoute, Eddie KW - Data Structures and Algorithms (cs.DS) KW - FOS: Computer and information sciences KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) AB -

The Swap gate is a ubiquitous tool for moving information on quantum hardware, yet it can be considered a classical operation because it does not entangle product states. Genuinely quantum operations could outperform Swap for the task of permuting qubits within an architecture, which we call routing. We consider quantum routing in two models: (1) allowing arbitrary two-qubit unitaries, or (2) allowing Hamiltonians with norm-bounded interactions. We lower bound the circuit depth or time of quantum routing in terms of spectral properties of graphs representing the architecture interaction constraints, and give a generalized upper bound for all simple connected n-vertex graphs. In particular, we give conditions for a superpolynomial classical-quantum routing separation, which exclude graphs with a small spectral gap and graphs of bounded degree. Finally, we provide examples of a quadratic separation between gate-based and Hamiltonian routing models with a constant number of local ancillas per qubit and of an Ω(n) speedup if we also allow fast local interactions.

VL - 4 UR - https://arxiv.org/abs/2206.01766 CP - 010313 U5 - https://doi.org/10.1103/PRXQuantum.4.010313 ER - TY - JOUR T1 - Collision-resolved pressure sensing Y1 - 2023 A1 - Daniel S. Barker A1 - Daniel Carney A1 - Thomas W. LeBrun A1 - David C. Moore A1 - Jacob M. Taylor AB -

Heat and pressure are ultimately transmitted via quantized degrees of freedom, like gas particles and phonons. While a continuous Brownian description of these noise sources is adequate to model measurements with relatively long integration times, sufficiently precise measurements can resolve the detailed time dependence coming from individual bath-system interactions. We propose the use of nanomechanical devices operated with impulse readout sensitivity around the ``standard quantum limit'' to sense ultra-low gas pressures by directly counting the individual collisions of gas particles on a sensor. We illustrate this in two paradigmatic model systems: an optically levitated nanobead and a tethered membrane system in a phononic bandgap shield.

UR - https://arxiv.org/abs/2303.09922 ER - TY - RPRT T1 - Data Needs and Challenges of Quantum Dot Devices Automation: Workshop Report Y1 - 2023 A1 - Justyna P. Zwolak A1 - Jacob M. Taylor A1 - Reed Andrews A1 - Jared Benson A1 - Garnett Bryant A1 - Donovan Buterakos A1 - Anasua Chatterjee A1 - Sankar Das Sarma A1 - Mark A. Eriksson A1 - Eliška Greplová A1 - Michael J. Gullans A1 - Fabian Hader A1 - Tyler J. Kovach A1 - Pranav S. Mundada A1 - Mick Ramsey A1 - Torbjoern Rasmussen A1 - Brandon Severin A1 - Anthony Sigillito A1 - Brennan Undseth A1 - Brian Weber AB -

Gate-defined quantum dots are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. In this report, we outline current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present ideas put forward by the quantum dot community on how to overcome them.

UR - https://arxiv.org/abs/2312.14322 U5 - https://doi.org/10.48550/arXiv.2312.14322 ER - TY - JOUR T1 - Digital quantum simulation of NMR experiments JF - Science Advances Y1 - 2023 A1 - Seetharam, Kushal A1 - Biswas, Debopriyo A1 - Noel, Crystal A1 - Risinger, Andrew A1 - Zhu, Daiwei A1 - Katz, Or A1 - Chattopadhyay, Sambuddha A1 - Cetina, Marko A1 - Monroe, Christopher A1 - Demler, Eugene A1 - Sels, Dries AB -

Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature devices. Our work opens a practical application for quantum computation.

VL - 9 UR - https://arxiv.org/abs/2109.13298 U5 - 10.1126/sciadv.adh2594 ER - TY - JOUR T1 - The discrete adiabatic quantum linear system solver has lower constant factors than the randomized adiabatic solver Y1 - 2023 A1 - Pedro C. S. Costa A1 - Dong An A1 - Ryan Babbush A1 - Dominic Berry AB -

The solution of linear systems of equations is the basis of many other quantum algorithms, and recent results provided an algorithm with optimal scaling in both the condition number κ and the allowable error ϵ [PRX Quantum \textbf{3}, 0403003 (2022)]. That work was based on the discrete adiabatic theorem, and worked out an explicit constant factor for an upper bound on the complexity. Here we show via numerical testing on random matrices that the constant factor is in practice about 1,500 times smaller than the upper bound found numerically in the previous results. That means that this approach is far more efficient than might naively be expected from the upper bound. In particular, it is over an order of magnitude more efficient than using a randomised approach from [arXiv:2305.11352] that claimed to be more efficient.

UR - https://arxiv.org/abs/2312.07690 ER - TY - JOUR T1 - Experimental Observation of Thermalization with Noncommuting Charges JF - PRX Quantum Y1 - 2023 A1 - Florian Kranzl A1 - Aleksander Lasek A1 - Manoj K. Joshi A1 - Amir Kalev A1 - Rainer Blatt A1 - Christian F. Roos A1 - Nicole Yunger Halpern AB -

Quantum simulators have recently enabled experimental observations of quantum many-body systems' internal thermalization. Often, the global energy and particle number are conserved, and the system is prepared with a well-defined particle number - in a microcanonical subspace. However, quantum evolution can also conserve quantities, or charges, that fail to commute with each other. Noncommuting charges have recently emerged as a subfield at the intersection of quantum thermodynamics and quantum information. Until now, this subfield has remained theoretical. We initiate the experimental testing of its predictions, with a trapped-ion simulator. We prepare 6-21 spins in an approximate microcanonical subspace, a generalization of the microcanonical subspace for accommodating noncommuting charges, which cannot necessarily have well-defined nontrivial values simultaneously. We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations. The noncommuting charges are the three spin components. We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state. This work bridges quantum many-body simulators to the quantum thermodynamics of noncommuting charges, whose predictions can now be tested.

VL - 4 UR - https://arxiv.org/abs/2202.04652 U5 - 10.1103/prxquantum.4.020318 ER - TY - JOUR T1 - A family of permutationally invariant quantum codes Y1 - 2023 A1 - Arda Aydin A1 - Max A. Alekseyev A1 - Alexander Barg AB -

We construct a new family of permutationally invariant codes that correct t Pauli errors for any t≥1. We also show that codes in the new family correct spontaneous decay errors as well as deletion errors. In many cases the codes in this family are shorter than the best previously known explicit families of permutationally invariant codes both for Pauli errors, deletions, and for the amplitude damping channel. As a separate result, we generalize the conditions for permutationally invariant codes to correct t Pauli errors from the previously known results for t=1 to any number of errors. For small t, these conditions can be used to construct new examples of codes by computer.

UR - https://arxiv.org/abs/2310.05358 ER - TY - JOUR T1 - Fault-tolerant hyperbolic Floquet quantum error correcting codes Y1 - 2023 A1 - Ali Fahimniya A1 - Hossein Dehghani A1 - Kishor Bharti A1 - Sheryl Mathew A1 - Alicia J. Kollár A1 - Alexey V. Gorshkov A1 - Michael J. Gullans AB -

A central goal in quantum error correction is to reduce the overhead of fault-tolerant quantum computing by increasing noise thresholds and reducing the number of physical qubits required to sustain a logical qubit. We introduce a potential path towards this goal based on a family of dynamically generated quantum error correcting codes that we call "hyperbolic Floquet codes." These codes are defined by a specific sequence of non-commuting two-body measurements arranged periodically in time that stabilize a topological code on a hyperbolic manifold with negative curvature. We focus on a family of lattices for n qubits that, according to our prescription that defines the code, provably achieve a finite encoding rate (1/8+2/n) and have a depth-3 syndrome extraction circuit. Similar to hyperbolic surface codes, the distance of the code at each time-step scales at most logarithmically in n. The family of lattices we choose indicates that this scaling is achievable in practice. We develop and benchmark an efficient matching-based decoder that provides evidence of a threshold near 0.1% in a phenomenological noise model. Utilizing weight-two check operators and a qubit connectivity of 3, one of our hyperbolic Floquet codes uses 400 physical qubits to encode 52 logical qubits with a code distance of 8, i.e., it is a [[400,52,8]] code. At small error rates, comparable logical error suppression to this code requires 5x as many physical qubits (1924) when using the honeycomb Floquet code with the same noise model and decoder.

UR - https://arxiv.org/abs/2309.10033 ER - TY - JOUR T1 - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes Y1 - 2023 A1 - Jon Nelson A1 - Gregory Bentsen A1 - Steven T. Flammia A1 - Michael J. Gullans AB -

Low-depth random circuit codes possess many desirable properties for quantum error correction but have so far only been analyzed in the code capacity setting where it is assumed that encoding gates and syndrome measurements are noiseless. In this work, we design a fault-tolerant distillation protocol for preparing encoded states of one-dimensional random circuit codes even when all gates and measurements are subject to noise. This is sufficient for fault-tolerant quantum memory since these encoded states can then be used as ancillas for Steane error correction. We show through numerical simulations that our protocol can correct erasure errors up to an error rate of 2%. In addition, we also extend results in the code capacity setting by developing a maximum likelihood decoder for depolarizing noise similar to work by Darmawan et al. As in their work, we formulate the decoding problem as a tensor network contraction and show how to contract the network efficiently by exploiting the low-depth structure. Replacing the tensor network with a so-called ''tropical'' tensor network, we also show how to perform minimum weight decoding. With these decoders, we are able to numerically estimate the depolarizing error threshold of finite-rate random circuit codes and show that this threshold closely matches the hashing bound even when the decoding is sub-optimal.

UR - https://arxiv.org/abs/2311.17985 ER - TY - CONF T1 - Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium T2 - Advances in Cryptology – CRYPTO 2023 Y1 - 2023 A1 - Barbosa, Manuel A1 - Barthe, Gilles A1 - Doczkal, Christian A1 - Don, Jelle A1 - Fehr, Serge A1 - Grégoire, Benjamin A1 - Huang, Yu-Hsuan A1 - Hülsing, Andreas A1 - Lee, Yi A1 - Wu, Xiaodi ED - Handschuh, Helena ED - Lysyanskaya, Anna AB -

We extend and consolidate the security justification for the Dilithium signature scheme. In particular, we identify a subtle but crucial gap that appears in several ROM and QROM security proofs for signature schemes that are based on the Fiat-Shamir with aborts paradigm, including Dilithium. The gap lies in the CMA-to-NMA reduction and was uncovered when trying to formalize a variant of the QROM security proof by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was confirmed by the authors, and there seems to be no simple patch for it. We provide new, fixed proofs for the affected CMA-to-NMA reduction, both for the ROM and the QROM, and we perform a concrete security analysis for the case of Dilithium to show that the claimed security level is still valid after addressing the gap. Furthermore, we offer a fully mechanized ROM proof for the CMA-security of Dilithium in the EasyCrypt proof assistant. Our formalization includes several new tools and techniques of independent interest for future formal verification results.

JA - Advances in Cryptology – CRYPTO 2023 PB - Springer Nature Switzerland CY - Cham SN - 978-3-031-38554-4 ER - TY - JOUR T1 - High-Energy Collision of Quarks and Hadrons in the Schwinger Model: From Tensor Networks to Circuit QED Y1 - 2023 A1 - Ron Belyansky A1 - Seth Whitsitt A1 - Niklas Mueller A1 - Ali Fahimniya A1 - Elizabeth R. Bennewitz A1 - Zohreh Davoudi A1 - Alexey V. Gorshkov AB -

With the aim of studying nonperturbative out-of-equilibrium dynamics of high-energy particle collisions on quantum simulators, we investigate the scattering dynamics of lattice quantum electrodynamics in 1+1 dimensions. Working in the bosonized formulation of the model, we propose an analog circuit-QED implementation that is native to the platform, requires minimal ingredients and approximations, and enables practical schemes for particle wave-packet preparation and evolution. Furthermore, working in the thermodynamic limit, we use uniform-matrix-product-state tensor networks to construct multi-particle wave-packet states, evolve them in time, and detect outgoing particles post collision. This facilitates the numerical simulation of scattering experiments in both confined and deconfined regimes of the model at different energies, giving rise to rich phenomenology, including inelastic production of quark and meson states, meson disintegration, and dynamical string formation and breaking. We obtain elastic and inelastic scattering cross sections, together with time-resolved momentum and position distributions of the outgoing particles. This study highlights the role of classical and quantum simulation in enhancing our understanding of scattering processes in quantum field theories in real time.

UR - https://arxiv.org/abs/2307.02522 ER - TY - JOUR T1 - Improved Digital Quantum Simulation by Non-Unitary Channels Y1 - 2023 A1 - W. Gong A1 - Yaroslav Kharkov A1 - Minh C. Tran A1 - Przemyslaw Bienias A1 - Alexey V. Gorshkov AB -

Simulating quantum systems is one of the most promising avenues to harness the computational power of quantum computers. However, hardware errors in noisy near-term devices remain a major obstacle for applications. Ideas based on the randomization of Suzuki-Trotter product formulas have been shown to be a powerful approach to reducing the errors of quantum simulation and lowering the gate count. In this paper, we study the performance of non-unitary simulation channels and consider the error structure of channels constructed from a weighted average of unitary circuits. We show that averaging over just a few simulation circuits can significantly reduce the Trotterization error for both single-step short-time and multi-step long-time simulations. We focus our analysis on two approaches for constructing circuit ensembles for averaging: (i) permuting the order of the terms in the Hamiltonian and (ii) applying a set of global symmetry transformations. We compare our analytical error bounds to empirical performance and show that empirical error reduction surpasses our analytical estimates in most cases. Finally, we test our method on an IonQ trapped-ion quantum computer accessed via the Amazon Braket cloud platform, and benchmark the performance of the averaging approach.

UR - https://arxiv.org/abs/2307.13028 ER - TY - JOUR T1 - Logical quantum processor based on reconfigurable atom arrays JF - Nature Y1 - 2023 A1 - Bluvstein, Dolev A1 - Evered, Simon J. A1 - Geim, Alexandra A. A1 - Li, Sophie H. A1 - Zhou, Hengyun A1 - Manovitz, Tom A1 - Ebadi, Sepehr A1 - Cain, Madelyn A1 - Kalinowski, Marcin A1 - Hangleiter, Dominik A1 - Ataides, J. Pablo Bonilla A1 - Maskara, Nishad A1 - Cong, Iris A1 - Gao, Xun A1 - Rodriguez, Pedro Sales A1 - Karolyshyn, Thomas A1 - Semeghini, Giulia A1 - Gullans, Michael J. A1 - Greiner, Markus A1 - Vuletic, Vladan A1 - Lukin, Mikhail D. UR - https://arxiv.org/abs/2312.03982 U5 - 10.1038/s41586-023-06927-3 ER - TY - JOUR T1 - Lower Bounds on Quantum Annealing Times JF - Phys. Rev. Lett. Y1 - 2023 A1 - García-Pintos, Luis Pedro A1 - Brady, Lucas T. A1 - Bringewatt, Jacob A1 - Liu, Yi-Kai KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) AB -

The adiabatic theorem provides sufficient conditions for the time needed to prepare a target ground state. While it is possible to prepare a target state much faster with more general quantum annealing protocols, rigorous results beyond the adiabatic regime are rare. Here, we provide such a result, deriving lower bounds on the time needed to successfully perform quantum annealing. The bounds are asymptotically saturated by three toy models where fast annealing schedules are known: the Roland and Cerf unstructured search model, the Hamming spike problem, and the ferromagnetic p-spin model. Our bounds demonstrate that these schedules have optimal scaling. Our results also show that rapid annealing requires coherent superpositions of energy eigenstates, singling out quantum coherence as a computational resource.

VL - 130 UR - https://arxiv.org/abs/2210.15687 CP - 140601 U5 - https://doi.org/10.1103/PhysRevLett.130.140601 ER - TY - JOUR T1 - Minimum-entanglement protocols for function estimation JF - Physical Review Research Y1 - 2023 A1 - Adam Ehrenberg A1 - Jacob Bringewatt A1 - Alexey V. Gorshkov AB -

We derive a family of optimal protocols, in the sense of saturating the quantum Cramér-Rao bound, for measuring a linear combination of d field amplitudes with quantum sensor networks, a key subprotocol of general quantum sensor network applications. We demonstrate how to select different protocols from this family under various constraints. Focusing primarily on entanglement-based constraints, we prove the surprising result that highly entangled states are not necessary to achieve optimality in many cases. Specifically, we prove necessary and sufficient conditions for the existence of optimal protocols using at most k-partite entanglement. We prove that the protocols which satisfy these conditions use the minimum amount of entanglement possible, even when given access to arbitrary controls and ancilla. Our protocols require some amount of time-dependent control, and we show that a related class of time-independent protocols fail to achieve optimal scaling for generic functions.

VL - 5 UR - https://arxiv.org/abs/2110.07613 U5 - 10.1103/physrevresearch.5.033228 ER - TY - JOUR T1 - Non-Abelian eigenstate thermalization hypothesis JF - Phys. Rev. Lett. Y1 - 2023 A1 - Murthy, Chaitanya A1 - Babakhani, Arman A1 - Iniguez, Fernando A1 - Srednicki, Mark A1 - Nicole Yunger Halpern KW - FOS: Physical sciences KW - High Energy Physics - Theory (hep-th) KW - Quantum Gases (cond-mat.quant-gas) KW - Quantum Physics (quant-ph) KW - Statistical Mechanics (cond-mat.stat-mech) KW - Strongly Correlated Electrons (cond-mat.str-el) AB -

The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries. If the Hamiltonian conserves one quantity ("charge"), the ETH implies thermalization within a charge sector -- in a microcanonical subspace. But quantum systems can have charges that fail to commute with each other and so share no eigenbasis; microcanonical subspaces may not exist. Furthermore, the Hamiltonian will have degeneracies, so the ETH need not imply thermalization. We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics. Illustrating with SU(2) symmetry, we apply the non-Abelian ETH in calculating local observables' time-averaged and thermal expectation values. In many cases, we prove, the time average thermalizes. However, we also find cases in which, under a physically reasonable assumption, the time average converges to the thermal average unusually slowly as a function of the global-system size. This work extends the ETH, a cornerstone of many-body physics, to noncommuting charges, recently a subject of intense activity in quantum thermodynamics.

VL - 130 UR - https://arxiv.org/abs/2206.05310 U5 - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.140402 ER - TY - JOUR T1 - Noncommuting conserved charges in quantum thermodynamics and beyond JF - Nature Reviews Physics Y1 - 2023 A1 - Shayan Majidy A1 - William F. Braasch A1 - Aleksander Lasek A1 - Twesh Upadhyaya A1 - Amir Kalev A1 - Nicole Yunger Halpern AB -

Thermodynamic systems typically conserve quantities ("charges") such as energy and particle number. The charges are often assumed implicitly to commute with each other. Yet quantum phenomena such as uncertainty relations rely on observables' failure to commute. How do noncommuting charges affect thermodynamic phenomena? This question, upon arising at the intersection of quantum information theory and thermodynamics, spread recently across many-body physics. Charges' noncommutation has been found to invalidate derivations of the thermal state's form, decrease entropy production, conflict with the eigenstate thermalization hypothesis, and more. This Perspective surveys key results in, opportunities for, and work adjacent to the quantum thermodynamics of noncommuting charges. Open problems include a conceptual puzzle: Evidence suggests that noncommuting charges may hinder thermalization in some ways while enhancing thermalization in others.

UR - https://arxiv.org/abs/2306.00054 U5 - 10.1038/s42254-023-00641-9 ER - TY - JOUR T1 - Parallelization techniques for quantum simulation of fermionic systems Y1 - 2023 A1 - Jacob Bringewatt A1 - Zohreh Davoudi AB -

Mapping fermionic operators to qubit operators is an essential step for simulating fermionic systems on a quantum computer. We investigate how the choice of such a mapping interacts with the underlying qubit connectivity of the quantum processor to enable (or impede) parallelization of the resulting Hamiltonian-simulation algorithm. It is shown that this problem can be mapped to a path coloring problem on a graph constructed from the particular choice of encoding fermions onto qubits and the fermionic interactions onto paths. The basic version of this problem is called the weak coloring problem. Taking into account the fine-grained details of the mapping yields what is called the strong coloring problem, which leads to improved parallelization performance. A variety of illustrative analytical and numerical examples are presented to demonstrate the amount of improvement for both weak and strong coloring-based parallelizations. Our results are particularly important for implementation on near-term quantum processors where minimizing circuit depth is necessary for algorithmic feasibility.

UR - https://arxiv.org/abs/2207.12470 ER - TY - JOUR T1 - Partial Syndrome Measurement for Hypergraph Product Codes Y1 - 2023 A1 - Noah Berthusen A1 - Daniel Gottesman AB -

Hypergraph product codes are a promising avenue to achieving fault-tolerant quantum computation with constant overhead. When embedding these and other constant-rate qLDPC codes into 2D, a significant number of nonlocal connections are required, posing difficulties for some quantum computing architectures. In this work, we introduce a fault-tolerance scheme that aims to alleviate the effects of implementing this nonlocality by measuring generators acting on spatially distant qubits less frequently than those which do not. We investigate the performance of a simplified version of this scheme, where the measured generators are randomly selected. When applied to hypergraph product codes and a modified small-set-flip decoding algorithm, we prove that for a sufficiently high percentage of generators being measured, a threshold still exists. We also find numerical evidence that the logical error rate is exponentially suppressed even when a large constant fraction of generators are not measured.

UR - https://arxiv.org/abs/2306.17122 ER - TY - JOUR T1 - Quantum Algorithms for Simulating Nuclear Effective Field Theories Y1 - 2023 A1 - James D. Watson A1 - Jacob Bringewatt A1 - Alexander F. Shaw A1 - Andrew M. Childs A1 - Alexey V. Gorshkov A1 - Zohreh Davoudi AB -

Quantum computers offer the potential to simulate nuclear processes that are classically intractable. With the goal of understanding the necessary quantum resources, we employ state-of-the-art Hamiltonian-simulation methods, and conduct a thorough algorithmic analysis, to estimate the qubit and gate costs to simulate low-energy effective field theories (EFTs) of nuclear physics. In particular, within the framework of nuclear lattice EFT, we obtain simulation costs for the leading-order pionless and pionful EFTs. We consider both static pions represented by a one-pion-exchange potential between the nucleons, and dynamical pions represented by relativistic bosonic fields coupled to non-relativistic nucleons. We examine the resource costs for the tasks of time evolution and energy estimation for physically relevant scales. We account for model errors associated with truncating either long-range interactions in the one-pion-exchange EFT or the pionic Hilbert space in the dynamical-pion EFT, and for algorithmic errors associated with product-formula approximations and quantum phase estimation. Our results show that the pionless EFT is the least costly to simulate and the dynamical-pion theory is the costliest. We demonstrate how symmetries of the low-energy nuclear Hamiltonians can be utilized to obtain tighter error bounds on the simulation algorithm. By retaining the locality of nucleonic interactions when mapped to qubits, we achieve reduced circuit depth and substantial parallelization. We further develop new methods to bound the algorithmic error for classes of fermionic Hamiltonians that preserve the number of fermions, and demonstrate that reasonably tight Trotter error bounds can be achieved by explicitly computing nested commutators of Hamiltonian terms. This work highlights the importance of combining physics insights and algorithmic advancement in reducing quantum-simulation costs.

UR - https://arxiv.org/abs/2312.05344 ER - TY - JOUR T1 - Quantum Sensing with Erasure Qubits Y1 - 2023 A1 - Pradeep Niroula A1 - Jack Dolde A1 - Xin Zheng A1 - Jacob Bringewatt A1 - Adam Ehrenberg A1 - Kevin C. Cox A1 - Jeff Thompson A1 - Michael J. Gullans A1 - Shimon Kolkowitz A1 - Alexey V. Gorshkov AB -

The dominant noise in an "erasure qubit" is an erasure -- a type of error whose occurrence and location can be detected. Erasure qubits have potential to reduce the overhead associated with fault tolerance. To date, research on erasure qubits has primarily focused on quantum computing and quantum networking applications. Here, we consider the applicability of erasure qubits to quantum sensing and metrology. We show theoretically that, for the same level of noise, an erasure qubit acts as a more precise sensor or clock compared to its non-erasure counterpart. We experimentally demonstrate this by artificially injecting either erasure errors (in the form of atom loss) or dephasing errors into a differential optical lattice clock comparison, and observe enhanced precision in the case of erasure errors for the same injected error rate. Similar benefits of erasure qubits to sensing can be realized in other quantum platforms like Rydberg atoms and superconducting qubits

UR - https://arxiv.org/abs/2310.01512 ER - TY - JOUR T1 - Quantum spherical codes Y1 - 2023 A1 - Shubham P. Jain A1 - Joseph T. Iosue A1 - Alexander Barg A1 - Victor V. Albert AB -

We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes. We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions while requiring a similar type of overhead. Our polytope-based cat codes consist of sets of points with large separation that at the same time form averaging sets known as spherical designs. We also recast concatenations of CSS codes with cat codes as quantum spherical codes, revealing a new way to autonomously protect against dephasing noise

UR - https://arxiv.org/abs/2302.11593 ER - TY - JOUR T1 - Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions Y1 - 2023 A1 - Yuri Alexeev A1 - Maximilian Amsler A1 - Paul Baity A1 - Marco Antonio Barroca A1 - Sanzio Bassini A1 - Torey Battelle A1 - Daan Camps A1 - David Casanova A1 - Young jai Choi A1 - Frederic T. Chong A1 - Charles Chung A1 - Chris Codella A1 - Antonio D. Corcoles A1 - James Cruise A1 - Alberto Di Meglio A1 - Jonathan Dubois A1 - Ivan Duran A1 - Thomas Eckl A1 - Sophia Economou A1 - Stephan Eidenbenz A1 - Bruce Elmegreen A1 - Clyde Fare A1 - Ismael Faro A1 - Cristina Sanz Fernández A1 - Rodrigo Neumann Barros Ferreira A1 - Keisuke Fuji A1 - Bryce Fuller A1 - Laura Gagliardi A1 - Giulia Galli A1 - Jennifer R. Glick A1 - Isacco Gobbi A1 - Pranav Gokhale A1 - Salvador de la Puente Gonzalez A1 - Johannes Greiner A1 - Bill Gropp A1 - Michele Grossi A1 - Emmanuel Gull A1 - Burns Healy A1 - Benchen Huang A1 - Travis S. Humble A1 - Nobuyasu Ito A1 - Artur F. Izmaylov A1 - Ali Javadi-Abhari A1 - Douglas Jennewein A1 - Shantenu Jha A1 - Liang Jiang A1 - Barbara Jones A1 - Wibe Albert de Jong A1 - Petar Jurcevic A1 - William Kirby A1 - Stefan Kister A1 - Masahiro Kitagawa A1 - Joel Klassen A1 - Katherine Klymko A1 - Kwangwon Koh A1 - Masaaki Kondo A1 - Doga Murat Kurkcuoglu A1 - Krzysztof Kurowski A1 - Teodoro Laino A1 - Ryan Landfield A1 - Matt Leininger A1 - Vicente Leyton-Ortega A1 - Ang Li A1 - Meifeng Lin A1 - Junyu Liu A1 - Nicolas Lorente A1 - Andre Luckow A1 - Simon Martiel A1 - Francisco Martin-Fernandez A1 - Margaret Martonosi A1 - Claire Marvinney A1 - Arcesio Castaneda Medina A1 - Dirk Merten A1 - Antonio Mezzacapo A1 - Kristel Michielsen A1 - Abhishek Mitra A1 - Tushar Mittal A1 - Kyungsun Moon A1 - Joel Moore A1 - Mario Motta A1 - Young-Hye Na A1 - Yunseong Nam A1 - Prineha Narang A1 - Yu-ya Ohnishi A1 - Daniele Ottaviani A1 - Matthew Otten A1 - Scott Pakin A1 - Vincent R. Pascuzzi A1 - Ed Penault A1 - Tomasz Piontek A1 - Jed Pitera A1 - Patrick Rall A1 - Gokul Subramanian Ravi A1 - Niall Robertson A1 - Matteo Rossi A1 - Piotr Rydlichowski A1 - Hoon Ryu A1 - Georgy Samsonidze A1 - Mitsuhisa Sato A1 - Nishant Saurabh A1 - Vidushi Sharma A1 - Kunal Sharma A1 - Soyoung Shin A1 - George Slessman A1 - Mathias Steiner A1 - Iskandar Sitdikov A1 - In-Saeng Suh A1 - Eric Switzer A1 - Wei Tang A1 - Joel Thompson A1 - Synge Todo A1 - Minh Tran A1 - Dimitar Trenev A1 - Christian Trott A1 - Huan-Hsin Tseng A1 - Esin Tureci A1 - David García Valinas A1 - Sofia Vallecorsa A1 - Christopher Wever A1 - Konrad Wojciechowski A1 - Xiaodi Wu A1 - Shinjae Yoo A1 - Nobuyuki Yoshioka A1 - Victor Wen-zhe Yu A1 - Seiji Yunoki A1 - Sergiy Zhuk A1 - Dmitry Zubarev AB -

Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.

UR - https://arxiv.org/abs/2312.09733 ER - TY - JOUR T1 - Randomized measurement protocols for lattice gauge theories Y1 - 2023 A1 - Jacob Bringewatt A1 - Jonathan Kunjummen A1 - Niklas Mueller AB -

Randomized measurement protocols, including classical shadows, entanglement tomography, and randomized benchmarking are powerful techniques to estimate observables, perform state tomography, or extract the entanglement properties of quantum states. While unraveling the intricate structure of quantum states is generally difficult and resource-intensive, quantum systems in nature are often tightly constrained by symmetries. This can be leveraged by the symmetry-conscious randomized measurement schemes we propose, yielding clear advantages over symmetry-blind randomization such as reducing measurement costs, enabling symmetry-based error mitigation in experiments, allowing differentiated measurement of (lattice) gauge theory entanglement structure, and, potentially, the verification of topologically ordered states in existing and near-term experiments.

UR - https://arxiv.org/abs/2303.15519 ER - TY - JOUR T1 - Realization of 1D Anyons with Arbitrary Statistical Phase Y1 - 2023 A1 - Joyce Kwan A1 - Perrin Segura A1 - Yanfei Li A1 - Sooshin Kim A1 - Alexey V. Gorshkov A1 - André Eckardt A1 - Brice Bakkali-Hassani A1 - Markus Greiner AB -

Low-dimensional quantum systems can host anyons, particles with exchange statistics that are neither bosonic nor fermionic. Despite indications of a wealth of exotic phenomena, the physics of anyons in one dimension (1D) remains largely unexplored. Here, we realize Abelian anyons in 1D with arbitrary exchange statistics using ultracold atoms in an optical lattice, where we engineer the statistical phase via a density-dependent Peierls phase. We explore the dynamical behavior of two anyons undergoing quantum walks, and observe the anyonic Hanbury Brown-Twiss effect, as well as the formation of bound states without on-site interactions. Once interactions are introduced, we observe spatially asymmetric transport in contrast to the symmetric dynamics of bosons and fermions. Our work forms the foundation for exploring the many-body behavior of 1D anyons.

UR - https://arxiv.org/abs/2306.01737 ER - TY - JOUR T1 - On the stability of solutions to Schrödinger's equation short of the adiabatic limit Y1 - 2023 A1 - Jacob Bringewatt A1 - Michael Jarret A1 - T. C. Mooney AB -

We prove an adiabatic theorem that applies at timescales short of the adiabatic limit. Our proof analyzes the stability of solutions to Schrodinger's equation under perturbation. We directly characterize cross-subspace effects of perturbation, which are typically significantly less than suggested by the perturbation's operator norm. This stability has numerous consequences: we can (1) find timescales where the solution of Schrodinger's equation converges to the ground state of a block, (2) lower bound the convergence to the global ground state by demonstrating convergence to some other known quantum state, (3) guarantee faster convergence than the standard adiabatic theorem when the ground state of the perturbed Hamiltonian (H) is close to that of the unperturbed H, and (4) bound tunneling effects in terms of the global spectral gap when H is ``stoquastic'' (a Z-matrix). Our results apply to quantum annealing protocols with faster convergence than usually guaranteed by a standard adiabatic theorem. Our upper and lower bounds demonstrate that at timescales short of the adiabatic limit, subspace dynamics can dominate over global dynamics. Thus, we see that convergence to particular target states can be understood as the result of otherwise local dynamics.

UR - https://arxiv.org/abs/2303.13478 ER - TY - JOUR T1 - On the Two-sided Permutation Inversion Problem Y1 - 2023 A1 - Gorjan Alagic A1 - Chen Bai A1 - Alexander Poremba A1 - Kaiyan Shi AB -

In the permutation inversion problem, the task is to find the preimage of some challenge value, given oracle access to the permutation. This is a fundamental problem in query complexity, and appears in many contexts, particularly cryptography. In this work, we examine the setting in which the oracle allows for quantum queries to both the forward and the inverse direction of the permutation -- except that the challenge value cannot be submitted to the latter. Within that setting, we consider two options for the inversion algorithm: whether it can get quantum advice about the permutation, and whether it must produce the entire preimage (search) or only the first bit (decision). We prove several theorems connecting the hardness of the resulting variations of the inversion problem, and establish a number of lower bounds. Our results indicate that, perhaps surprisingly, the inversion problem does not become significantly easier when the adversary is granted oracle access to the inverse, provided it cannot query the challenge itself.

UR - https://arxiv.org/abs/2306.13729 ER - TY - JOUR T1 - Verifiable measurement-based quantum random sampling with trapped ions Y1 - 2023 A1 - Martin Ringbauer A1 - Marcel Hinsche A1 - Thomas Feldker A1 - Paul K. Faehrmann A1 - Juani Bermejo-Vega A1 - Claire Edmunds A1 - Lukas Postler A1 - Roman Stricker A1 - Christian D. Marciniak A1 - Michael Meth A1 - Ivan Pogorelov A1 - Rainer Blatt A1 - Philipp Schindler A1 - Jens Eisert A1 - Thomas Monz A1 - Dominik Hangleiter AB -

Quantum computers are now on the brink of outperforming their classical counterparts. One way to demonstrate the advantage of quantum computation is through quantum random sampling performed on quantum computing devices. However, existing tools for verifying that a quantum device indeed performed the classically intractable sampling task are either impractical or not scalable to the quantum advantage regime. The verification problem thus remains an outstanding challenge. Here, we experimentally demonstrate efficiently verifiable quantum random sampling in the measurement-based model of quantum computation on a trapped-ion quantum processor. We create random cluster states, which are at the heart of measurement-based computing, up to a size of 4 x 4 qubits. Moreover, by exploiting the structure of these states, we are able to recycle qubits during the computation to sample from entangled cluster states that are larger than the qubit register. We then efficiently estimate the fidelity to verify the prepared states--in single instances and on average--and compare our results to cross-entropy benchmarking. Finally, we study the effect of experimental noise on the certificates. Our results and techniques provide a feasible path toward a verified demonstration of a quantum advantage.

UR - https://arxiv.org/abs/2307.14424 U5 - https://doi.org/10.48550/arXiv.2307.14424 ER - TY - JOUR T1 - What happens to entropy production when conserved quantities fail to commute with each other Y1 - 2023 A1 - Twesh Upadhyaya A1 - William F. Braasch, Jr. A1 - Gabriel T. Landi A1 - Nicole Yunger Halpern AB -

We extend entropy production to a deeply quantum regime involving noncommuting conserved quantities. Consider a unitary transporting conserved quantities ("charges") between two systems initialized in thermal states. Three common formulae model the entropy produced. They respectively cast entropy as an extensive thermodynamic variable, as an information-theoretic uncertainty measure, and as a quantifier of irreversibility. Often, the charges are assumed to commute with each other (e.g., energy and particle number). Yet quantum charges can fail to commute. Noncommutation invites generalizations, which we posit and justify, of the three formulae. Charges' noncommutation, we find, breaks the formulae's equivalence. Furthermore, different formulae quantify different physical effects of charges' noncommutation on entropy production. For instance, entropy production can signal contextuality - true nonclassicality - by becoming nonreal. This work opens up stochastic thermodynamics to noncommuting - and so particularly quantum - charges.

UR - https://arxiv.org/abs/2305.15480 ER - TY - JOUR T1 - Certifying Temporal Correlations Y1 - 2022 A1 - Harshank Shrotriya A1 - Leong-Chuan Kwek, Kishor Bharti A1 - Kishor Bharti AB -

Self-testing has been established as a major approach for quantum device certification based on experimental statistics under minimal assumptions. However, despite more than 20 years of research effort most of the self-testing protocols are restricted to spatial scenarios (Bell scenarios), without any temporal generalisations known. Under the scenario of sequential measurements performed on a single quantum system, we build upon previous works which used semi-definite programming (SDP) based methods to bound sequential measurement inequalities. For such SDPs, we show that the optimiser matrix is unique and moreover this uniqueness is robust to small deviations from the quantum bound. Further, we consider a generalised scenario in presence of quantum channels and draw analogies in the structure of Bell and sequential inequalities using the pseudo-density matrix formalism. These analogies allow us to show a practical use of maximal violations of sequential inequalities in the form of certification of quantum channels up to isometries. 

UR - https://arxiv.org/abs/2206.06092 ER - TY - JOUR T1 - Classification of (2+1)D invertible fermionic topological phases with symmetry JF - Phys. Rev. B Y1 - 2022 A1 - Maissam Barkeshli A1 - Yu-An Chen A1 - Po-Shen Hsin A1 - Naren Manjunath AB -

We provide a classification of invertible topological phases of interacting fermions with symmetry in two spatial dimensions for general fermionic symmetry groups Gf and general values of the chiral central charge c−. Here Gf is a central extension of a bosonic symmetry group Gb by fermion parity, (−1)F, specified by a second cohomology class [ω2]∈H2(Gb,Z2). Our approach proceeds by gauging fermion parity and classifying the resulting Gb symmetry-enriched topological orders while keeping track of certain additional data and constraints. We perform this analysis through two perspectives, using G-crossed braided tensor categories and Spin(2c−)1 Chern-Simons theory coupled to a background G gauge field. These results give a way to characterize and classify invertible fermionic topological phases in terms of a concrete set of data and consistency equations, which is more physically transparent and computationally simpler than the more abstract methods using cobordism theory and spectral sequences. Our results also generalize and provide a different approach to the recent classification of fermionic symmetry-protected topological phases by Wang and Gu, which have chiral central charge c−=0. We show how the 10-fold way classification of topological insulators and superconductors fits into our scheme, along with general non-perturbative constraints due to certain choices of c− and Gf. Mathematically, our results also suggest an explicit general parameterization of deformation classes of (2+1)D invertible topological quantum field theories with Gf symmetry. 

VL - 105 UR - https://arxiv.org/abs/2109.11039 CP - 235143 U5 - https://doi.org/10.1103/PhysRevB.105.235143 ER - TY - JOUR T1 - Closing the Locality and Detection Loopholes in Multiparticle Entanglement Self-Testing JF - Physical Review Letters Y1 - 2022 A1 - Dian Wu A1 - Qi Zhao A1 - Can Wang A1 - Liang Huang A1 - Yang-Fan Jiang A1 - Bing Bai A1 - You Zhou A1 - Xue-Mei Gu A1 - Feng-Ming Liu A1 - Ying-Qiu Mao A1 - Qi-Chao Sun A1 - Ming-Cheng Chen A1 - Jun Zhang A1 - Cheng-Zhi Peng A1 - Xiao-Bo Zhu A1 - Qiang Zhang A1 - Chao-Yang Lu A1 - Jian-Wei Pan AB -

First proposed by Mayers and Yao, self-testing provides a certification method to infer the underlying physics of quantum experiments in a black-box scenario. Numerous demonstrations have been reported to self-test various types of entangled states. However, all the multiparticle self-testing experiments reported so far suffer from both detection and locality loopholes. Here, we report the first experimental realization of multiparticle entanglement self-testing closing the locality loophole in a photonic system, and the detection loophole in a superconducting system, respectively. We certify three-party and four-party GHZ states with at least 0.84 (1) and 0.86 (3) fidelities in a device-independent way. These results can be viewed as a meaningful advance in multiparticle loophole-free self-testing, and also significant progress on the foundations of quantum entanglement certification.

VL - 128 U4 - 250401 UR - https://www.researchgate.net/profile/Dian-Wu/publication/361497881_Closing_the_Locality_and_Detection_Loopholes_in_Multiparticle_Entanglement_Self-Testing/links/62b55a8c1010dc02cc57530c/Closing-the-Locality-and-Detection-Loopholes-in-Multiparticle-Entangl CP - 25 U5 - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.250401 ER - TY - JOUR T1 - Codimension-2 defects and higher symmetries in (3+1)D topological phases Y1 - 2022 A1 - Barkeshli, Maissam A1 - Chen, Yu-An A1 - Huang, Sheng-Jie A1 - Kobayashi, Ryohei A1 - Tantivasadakarn, Nathanan A1 - Zhu, Guanyu KW - FOS: Mathematics KW - FOS: Physical sciences KW - High Energy Physics - Theory (hep-th) KW - Mathematical Physics (math-ph) KW - Quantum Algebra (math.QA) KW - Quantum Physics (quant-ph) KW - Strongly Correlated Electrons (cond-mat.str-el) AB -

(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of Z2 gauge theory with fermionic charges, in Z2×Z2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral (Dn) and alternating (A6) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an H4 cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D A6 gauge theory.

UR - https://arxiv.org/abs/2208.07367 U5 - 10.48550/ARXIV.2208.07367 ER - TY - JOUR T1 - Convex optimization for non-equilibrium steady states on a hybrid quantum processor Y1 - 2022 A1 - Lau, Jonathan Wei Zhong A1 - Lim, Kian Hwee A1 - Bharti, Kishor A1 - Kwek, Leong-Chuan A1 - Vinjanampathy, Sai KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) AB -

Finding the transient and steady state properties of open quantum systems is a central problem in various fields of quantum technologies. Here, we present a quantum-assisted algorithm to determine the steady states of open system dynamics. By reformulating the problem of finding the fixed point of Lindblad dynamics as a feasibility semi-definite program, we bypass several well known issues with variational quantum approaches to solving for steady states. We demonstrate that our hybrid approach allows us to estimate the steady states of higher dimensional open quantum systems and discuss how our method can find multiple steady states for systems with symmetries.

UR - https://arxiv.org/abs/2204.03203 U5 - https://doi.org/10.48550/arXiv.2204.03203 ER - TY - JOUR T1 - CoVault: A Secure Analytics Platform Y1 - 2022 A1 - De Viti, Roberta A1 - Sheff, Isaac A1 - Glaeser, Noemi A1 - Dinis, Baltasar A1 - Rodrigues, Rodrigo A1 - Katz, Jonathan A1 - Bhattacharjee, Bobby A1 - Hithnawi, Anwar A1 - Garg, Deepak A1 - Druschel, Peter KW - and Cluster Computing (cs.DC) KW - Cryptography and Security (cs.CR) KW - Distributed KW - FOS: Computer and information sciences KW - Parallel AB -

In a secure analytics platform, data sources consent to the exclusive use of their data for a pre-defined set of analytics queries performed by a specific group of analysts, and for a limited period. If the platform is secure under a sufficiently strong threat model, it can provide the missing link to enabling powerful analytics of sensitive personal data, by alleviating data subjects' concerns about leakage and misuse of data. For instance, many types of powerful analytics that benefit public health, mobility, infrastructure, finance, or sustainable energy can be made differentially private, thus alleviating concerns about privacy. However, no platform currently exists that is sufficiently secure to alleviate concerns about data leakage and misuse; as a result, many types of analytics that would be in the interest of data subjects and the public are not done. CoVault uses a new multi-party implementation of functional encryption (FE) for secure analytics, which relies on a unique combination of secret sharing, multi-party secure computation (MPC), and different trusted execution environments (TEEs). CoVault is secure under a very strong threat model that tolerates compromise and side-channel attacks on any one of a small set of parties and their TEEs. Despite the cost of MPC, we show that CoVault scales to very large data sizes using map-reduce based query parallelization. For example, we show that CoVault can perform queries relevant to epidemic analytics at scale.

UR - https://arxiv.org/abs/2208.03784 U5 - 10.48550/ARXIV.2208.03784 ER - TY - JOUR T1 - Deconfinement and Error Thresholds in Holography Y1 - 2022 A1 - Bao, Ning A1 - Cao, Charles A1 - Zhu, Guanyu KW - FOS: Physical sciences KW - High Energy Physics - Theory (hep-th) KW - Nuclear Theory (nucl-th) KW - Quantum Physics (quant-ph) KW - Strongly Correlated Electrons (cond-mat.str-el) AB -

We study the error threshold properties of holographic quantum error-correcting codes. We demonstrate that holographic CFTs admit an algebraic threshold, which is related to the confinement-deconfinement phase transition. We then apply geometric intuition from holography and the Hawking-Page phase transition to motivate the CFT result, and comment on potential extensions to other confining theories.

UR - https://arxiv.org/abs/2202.04710 U5 - 10.48550/ARXIV.2202.04710 ER - TY - JOUR T1 - Disordered Lieb-Robinson bounds in one dimension Y1 - 2022 A1 - Baldwin, Christopher L. A1 - Ehrenberg, Adam A1 - Guo, Andrew Y. A1 - Alexey V. Gorshkov KW - Disordered Systems and Neural Networks (cond-mat.dis-nn) KW - FOS: Physical sciences KW - Mathematical Physics (math-ph) KW - Quantum Physics (quant-ph) AB -

By tightening the conventional Lieb-Robinson bounds to better handle systems which lack translation invariance, we determine the extent to which "weak links" suppress operator growth in disordered one-dimensional spin chains. In particular, we prove that ballistic growth is impossible when the distribution of coupling strengths μ(J) has a sufficiently heavy tail at small J, and identify the correct dynamical exponent to use instead. Furthermore, through a detailed analysis of the special case in which the couplings are genuinely random and independent, we find that the standard formulation of Lieb-Robinson bounds is insufficient to capture the complexity of the dynamics -- we must distinguish between bounds which hold for all sites of the chain and bounds which hold for a subsequence of sites, and we show by explicit example that these two can have dramatically different behaviors. All the same, our result for the dynamical exponent is tight, in that we prove by counterexample that there cannot exist any Lieb-Robinson bound with a smaller exponent. We close by discussing the implications of our results, both major and minor, for numerous applications ranging from quench dynamics to the structure of ground states.

UR - https://arxiv.org/abs/2208.05509 U5 - 10.48550/ARXIV.2208.05509 ER - TY - JOUR T1 - Estimating gate complexities for the site-by-site preparation of fermionic vacua Y1 - 2022 A1 - Troy Sewell A1 - Aniruddha Bapat A1 - Stephen Jordan AB -

An important aspect of quantum simulation is the preparation of physically interesting states on a quantum computer, and this task can often be costly or challenging to implement. A digital, ``site-by-site'' scheme of state preparation was introduced in arXiv:1911.03505 as a way to prepare the vacuum state of certain fermionic field theory Hamiltonians with a mass gap. More generally, this algorithm may be used to prepare ground states of Hamiltonians by adding one site at a time as long as successive intermediate ground states share a non-zero overlap and the Hamiltonian has a non-vanishing spectral gap at finite lattice size. In this paper, we study the ground state overlap as a function of the number of sites for a range of quadratic fermionic Hamiltonians. Using analytical formulas known for free fermions, we are able to explore the large-N behavior and draw conclusions about the state overlap. For all models studied, we find that the overlap remains large (e.g. >0.1) up to large lattice sizes (N=64,72) except near quantum phase transitions or in the presence of gapless edge modes. For one-dimensional systems, we further find that two N/2-site ground states also share a large overlap with the N-site ground state everywhere except a region near the phase boundary. Based on these numerical results, we additionally propose a recursive alternative to the site-by-site state preparation algorithm.

UR - https://arxiv.org/abs/2207.01692 ER - TY - JOUR T1 - Experimental Implementation of an Efficient Test of Quantumness Y1 - 2022 A1 - Lewis, Laura A1 - Zhu, Daiwei A1 - Gheorghiu, Alexandru A1 - Noel, Crystal A1 - Katz, Or A1 - Harraz, Bahaa A1 - Wang, Qingfeng A1 - Risinger, Andrew A1 - Feng, Lei A1 - Biswas, Debopriyo A1 - Egan, Laird A1 - Vidick, Thomas A1 - Cetina, Marko A1 - Monroe, Christopher KW - FOS: Physical sciences KW - Other Condensed Matter (cond-mat.other) KW - Quantum Physics (quant-ph) AB -

A test of quantumness is a protocol where a classical user issues challenges to a quantum device to determine if it exhibits non-classical behavior, under certain cryptographic assumptions. Recent attempts to implement such tests on current quantum computers rely on either interactive challenges with efficient verification, or non-interactive challenges with inefficient (exponential time) verification. In this paper, we execute an efficient non-interactive test of quantumness on an ion-trap quantum computer. Our results significantly exceed the bound for a classical device's success.

UR - https://arxiv.org/abs/2209.14316 U5 - 10.48550/ARXIV.2209.14316 ER - TY - JOUR T1 - Experimental observation of thermalisation with noncommuting charges Y1 - 2022 A1 - Kranzl, Florian A1 - Lasek, Aleksander A1 - Joshi, Manoj K. A1 - Kalev, Amir A1 - Blatt, Rainer A1 - Roos, Christian F. A1 - Nicole Yunger Halpern KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) KW - Statistical Mechanics (cond-mat.stat-mech) AB -

Quantum simulators have recently enabled experimental observations of quantum many-body systems' internal thermalisation. Often, the global energy and particle number are conserved, and the system is prepared with a well-defined particle number - in a microcanonical subspace. However, quantum evolution can also conserve quantities, or charges, that fail to commute with each other. Noncommuting charges have recently emerged as a subfield at the intersection of quantum thermodynamics and quantum information. Until now, this subfield has remained theoretical. We initiate the experimental testing of its predictions, with a trapped-ion simulator. We prepare 6-15 spins in an approximate microcanonical subspace, a generalisation of the microcanonical subspace for accommodating noncommuting charges, which cannot necessarily have well-defined nontrivial values simultaneously. We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations. The noncommuting charges are the three spin components. We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state. This work bridges quantum many-body simulators to the quantum thermodynamics of noncommuting charges, whose predictions can now be tested.

UR - https://arxiv.org/abs/2202.04652 U5 - 10.48550/ARXIV.2202.04652 ER - TY - JOUR T1 - Experimentally Measuring Rolling and Sliding in Three-Dimensional Dense Granular Packings JF - Phys. Rev. Lett. Y1 - 2022 A1 - Zackery A. Benson A1 - Anton Peshkov A1 - Nicole Yunger Halpern A1 - Derek C. Richardson A1 - Wolfgang Losert AB -

We experimentally measure a three-dimensional (3D) granular system’s reversibility under cyclic compression. We image the grains using a refractive-index-matched fluid, then analyze the images using the artificial intelligence of variational autoencoders. These techniques allow us to track all the grains’ translations and 3D rotations with accuracy sufficient to infer sliding and rolling displacements. Our observations reveal unique roles played by 3D rotational motions in granular flows. We find that rotations and contact-point motion dominate the dynamics in the bulk, far from the perturbation’s source. Furthermore, we determine that 3D rotations are irreversible under cyclic compression. Consequently, contact-point sliding, which is dissipative, accumulates throughout the cycle. Using numerical simulations whose accuracy our experiment supports, we discover that much of the dissipation occurs in the bulk, where grains rotate more than they translate. Our observations suggest that the analysis of 3D rotations is needed for understanding granular materials’ unique and powerful ability to absorb and dissipate energy.

VL - 129 U4 - 048001 UR - https://arxiv.org/abs/2108.11975 CP - 4 U5 - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.048001 ER - TY - JOUR T1 - Extracting Wilson loop operators and fractional statistics from a single bulk ground state Y1 - 2022 A1 - Cian, Ze-Pei A1 - Hafezi, Mohammad A1 - Barkeshli, Maissam KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) KW - Strongly Correlated Electrons (cond-mat.str-el) AB -

An essential aspect of topological phases of matter is the existence of Wilson loop operators that keep the ground state subspace invariant. Here we present and implement an unbiased numerical optimization scheme to systematically find the Wilson loop operators given a single ground state wave function of a gapped Hamiltonian on a disk. We then show how these Wilson loop operators can be cut and glued through further optimization to give operators that can create, move, and annihilate anyon excitations. We subsequently use these operators to determine the braiding statistics and topological twists of the anyons, yielding a way to fully extract topological order from a single wave function. We apply our method to the ground state of the perturbed toric code and doubled semion models with a magnetic field that is up to a half of the critical value. From a contemporary perspective, this can be thought of as a machine learning approach to discover emergent 1-form symmetries of a ground state wave function. From an application perspective, our approach can be relevant to find Wilson loop operators in current quantum simulators.

UR - https://arxiv.org/abs/2209.14302 U5 - 10.48550/ARXIV.2209.14302 ER - TY - JOUR T1 - Higher-group symmetry in finite gauge theory and stabilizer codes Y1 - 2022 A1 - Barkeshli, Maissam A1 - Chen, Yu-An A1 - Hsin, Po-Shen A1 - Kobayashi, Ryohei KW - FOS: Mathematics KW - FOS: Physical sciences KW - High Energy Physics - Theory (hep-th) KW - Quantum Algebra (math.QA) KW - Quantum Physics (quant-ph) KW - Strongly Correlated Electrons (cond-mat.str-el) AB -

A large class of gapped phases of matter can be described by topological finite group gauge theories. In this paper, we derive the d-group global symmetry and its 't Hooft anomaly for topological finite group gauge theories in (d+1) space-time dimensions, including non-Abelian gauge groups and Dijkgraaf-Witten twists. We focus on the 1-form symmetry generated by invertible (Abelian) magnetic defects and the higher-form symmetries generated by invertible topological defects decorated with lower dimensional gauged symmetry-protected topological (SPT) phases. We show that due to a generalization of the Witten effect and charge-flux attachment, the 1-form symmetry generated by the magnetic defects mixes with other symmetries into a higher group. We describe such higher-group symmetry in various lattice model examples. We discuss several applications, including the classification of fermionic SPT phases in (3+1)D for general fermionic symmetry groups, where we also derive a simpler formula for the [O5]∈H5(BG,U(1)) obstruction than has appeared in previous work. We also show how the d-group symmetry is related to fault-tolerant non-Pauli logical gates and a refined Clifford hierarchy in stabilizer codes. We construct new logical gates in stabilizer codes using the d-group symmetry, such as the control-Z gate in (3+1)D Z2 toric code.

UR - https://arxiv.org/abs/2211.11764 U5 - 10.48550/ARXIV.2211.11764 ER - TY - JOUR T1 - Implementing a Fast Unbounded Quantum Fanout Gate Using Power-Law Interactions JF - Phys. Rev. Research Y1 - 2022 A1 - Andrew Y. Guo A1 - Abhinav Deshpande A1 - Su-Kuan Chu A1 - Zachary Eldredge A1 - Przemyslaw Bienias A1 - Dhruv Devulapalli A1 - Yuan Su A1 - Andrew M. Childs A1 - Alexey V. Gorshkov AB -

The standard circuit model for quantum computation presumes the ability to directly perform gates between arbitrary pairs of qubits, which is unlikely to be practical for large-scale experiments. Power-law interactions with strength decaying as 1/rα in the distance r provide an experimentally realizable resource for information processing, whilst still retaining long-range connectivity. We leverage the power of these interactions to implement a fast quantum fanout gate with an arbitrary number of targets. Our implementation allows the quantum Fourier transform (QFT) and Shor's algorithm to be performed on a D-dimensional lattice in time logarithmic in the number of qubits for interactions with α≤D. As a corollary, we show that power-law systems with α≤D are difficult to simulate classically even for short times, under a standard assumption that factoring is classically intractable. Complementarily, we develop a new technique to give a general lower bound, linear in the size of the system, on the time required to implement the QFT and the fanout gate in systems that are constrained by a linear light cone. This allows us to prove an asymptotically tighter lower bound for long-range systems than is possible with previously available techniques. 

VL - 4 UR - https://arxiv.org/abs/2007.00662 CP - L042016 U5 - https://doi.org/10.1103/PhysRevResearch.4.L042016 ER - TY - JOUR T1 - Isolation and manipulation of a single-donor detector in a silicon quantum dot JF - Phys. Rev. B Y1 - 2022 A1 - Lasek, A. A. A1 - Barnes, C. H. W. A1 - Ferrus, T. AB -

We demonstrate the isolation and electrostatic control of a single phosphorus donor in a silicon quantum dot by making use of source-drain bias during cooldown and biases applied to capacitively coupled gates. Characterization of the device at low temperatures and in magnetic fields shows single donors can be electrostatically isolated near one of the quantum dot's tunnel barriers with either single or double occupancy. This model is well supported by capacitance-based simulations. The ability to use the D 0 state of such isolated donors as a charge detector is demonstrated by observing the charge stability diagram of a nearby and capacitively coupled semiconnected double quantum dot.

VL - 106 U4 - 125423 UR - https://link.aps.org/doi/10.1103/PhysRevB.106.125423 U5 - 10.1103/PhysRevB.106.125423 ER - TY - JOUR T1 - Negative Quasiprobabilities Enhance Phase Estimation in Quantum-Optics Experiment JF - Phys. Rev. Lett. Y1 - 2022 A1 - Lupu-Gladstein, Noah A1 - Yilmaz, Y. Batuhan A1 - Arvidsson-Shukur, David R. M. A1 - Brodutch, Aharon A1 - Pang, Arthur O. T. A1 - Steinberg, Aephraim M. A1 - Nicole Yunger Halpern AB -

Operator noncommutation, a hallmark of quantum theory, limits measurement precision, according to uncertainty principles. Wielded correctly, though, noncommutation can boost precision. A recent foundational result relates a metrological advantage with negative quasiprobabilities—quantum extensions of probabilities—engendered by noncommuting operators. We crystallize the relationship in an equation that we prove theoretically and observe experimentally. Our proof-of-principle optical experiment features a filtering technique that we term partially postselected amplification (PPA). Using PPA, we measure a wave plate’s birefringent phase. PPA amplifies, by over two orders of magnitude, the information obtained about the phase per detected photon. In principle, PPA can boost the information obtained from the average filtered photon by an arbitrarily large factor. The filter’s amplification of systematic errors, we find, bounds the theoretically unlimited advantage in practice. PPA can facilitate any phase measurement and mitigates challenges that scale with trial number, such as proportional noise and detector saturation. By quantifying PPA’s metrological advantage with quasiprobabilities, we reveal deep connections between quantum foundations and precision measurement.

VL - 128 U4 - 220504 UR - https://link.aps.org/doi/10.1103/PhysRevLett.128.220504 U5 - 10.1103/PhysRevLett.128.220504 ER - TY - JOUR T1 - NISQ algorithm for the matrix elements of a generic observable Y1 - 2022 A1 - Rebecca Erbanni A1 - Kishor Bharti A1 - Leong-Chuan Kwek A1 - Dario Poletti AB -

The calculation of off-diagonal matrix elements has various applications in fields such as nuclear physics and quantum chemistry. In this paper, we present a noisy intermediate scale quantum algorithm for estimating the diagonal and off-diagonal matrix elements of a generic observable in the energy eigenbasis of a given Hamiltonian. Several numerical simulations indicate that this approach can find many of the matrix elements even when the trial functions are randomly initialized across a wide range of parameter values without, at the same time, the need to prepare the energy eigenstates. 

UR - https://arxiv.org/abs/2205.10058 ER - TY - JOUR T1 - Optimal scaling quantum linear systems solver via discrete adiabatic theorem JF - PRX Quantum Y1 - 2022 A1 - Costa, Pedro C. S. A1 - An, Dong A1 - Sanders, Yuval R. A1 - Su, Yuan A1 - Babbush, Ryan A1 - Berry, Dominic W. KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) AB -

Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches enabled near-linear scaling in the condition number κ of the linear system, without requiring a complicated variable-time amplitude amplification procedure. However, the most efficient of those procedures is still asymptotically sub-optimal by a factor of log(κ). Here, we prove a rigorous form of the adiabatic theorem that bounds the error in terms of the spectral gap for intrinsically discrete time evolutions. We use this discrete adiabatic theorem to develop a quantum algorithm for solving linear systems that is asymptotically optimal, in the sense that the complexity is strictly linear in κ, matching a known lower bound on the complexity. Our O(κlog(1/ϵ)) complexity is also optimal in terms of the combined scaling in κ and the precision ϵ. Compared to existing suboptimal methods, our algorithm is simpler and easier to implement. Moreover, we determine the constant factors in the algorithm, which would be suitable for determining the complexity in terms of gate counts for specific applications.

VL - 3 U4 - 040303 UR - https://arxiv.org/abs/2111.08152 CP - 4 U5 - https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.3.040303 ER - TY - JOUR T1 - Post-Quantum Security of the Even-Mansour Cipher JF - Eurocrypt Y1 - 2022 A1 - Gorjan Alagic A1 - Chen Bai A1 - Jonathan Katz A1 - Christian Majenz AB -

The Even-Mansour cipher is a simple method for constructing a (keyed) pseudorandom permutation E from a public random permutation~P:{0,1}n→{0,1}n. It is secure against classical attacks, with optimal attacks requiring qE queries to E and qP queries to P such that qE⋅qP≈2n. If the attacker is given \emph{quantum} access to both E and P, however, the cipher is completely insecure, with attacks using qE,qP=O(n) queries known. In any plausible real-world setting, however, a quantum attacker would have only \emph{classical} access to the keyed permutation~E implemented by honest parties, even while retaining quantum access to~P. Attacks in this setting with qE⋅q2P≈2n are known, showing that security degrades as compared to the purely classical case, but leaving open the question as to whether the Even-Mansour cipher can still be proven secure in this natural, "post-quantum" setting. We resolve this question, showing that any attack in that setting requires qE⋅q2P+qP⋅q2E≈2n. Our results apply to both the two-key and single-key variants of Even-Mansour. Along the way, we establish several generalizations of results from prior work on quantum-query lower bounds that may be of independent interest. 

UR - https://arxiv.org/abs/2112.07530 U5 - https://doi.org/10.48550/arXiv.2112.07530 ER - TY - JOUR T1 - Post-Quantum Security of the (Tweakable) FX Construction, and Applications Y1 - 2022 A1 - Gorjan Alagic A1 - Chen Bai A1 - Jonathan Katz A1 - Christian Majenz A1 - Patrick Struck AB -

The FX construction provides a way to increase the effective key length of a block cipher E. We prove security of a tweakable version of the FX construction in the post-quantum setting, i.e., against a quantum attacker given only classical access to the secretly keyed construction while retaining quantum access to E, a setting that seems to be the most relevant one for real-world applications. We then use our results to prove post-quantum security—in the same model—of the (plain) FX construction, Elephant (a finalist of NIST's lightweight cryptography standardization effort), and Chaskey (an ISO-standardized lightweight MAC

UR - https://eprint.iacr.org/2022/1097 ER - TY - JOUR T1 - Quantum Routing with Teleportation Y1 - 2022 A1 - Devulapalli, Dhruv A1 - Schoute, Eddie A1 - Bapat, Aniruddha A1 - Andrew M. Childs A1 - Alexey V. Gorshkov KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) AB -

We study the problem of implementing arbitrary permutations of qubits under interaction constraints in quantum systems that allow for arbitrarily fast local operations and classical communication (LOCC). In particular, we show examples of speedups over swap-based and more general unitary routing methods by distributing entanglement and using LOCC to perform quantum teleportation. We further describe an example of an interaction graph for which teleportation gives a logarithmic speedup in the worst-case routing time over swap-based routing. We also study limits on the speedup afforded by quantum teleportation - showing an O(NlogN−−−−−−−√) upper bound on the separation in routing time for any interaction graph - and give tighter bounds for some common classes of graphs.

UR - https://arxiv.org/abs/2204.04185 U5 - 10.48550/ARXIV.2204.04185 ER - TY - JOUR T1 - Quantum Simulation for High Energy Physics Y1 - 2022 A1 - Bauer, Christian W. A1 - Davoudi, Zohreh A1 - Balantekin, A. Baha A1 - Bhattacharya, Tanmoy A1 - Carena, Marcela A1 - de Jong, Wibe A. A1 - Draper, Patrick A1 - El-Khadra, Aida A1 - Gemelke, Nate A1 - Hanada, Masanori A1 - Kharzeev, Dmitri A1 - Lamm, Henry A1 - Li, Ying-Ying A1 - Liu, Junyu A1 - Lukin, Mikhail A1 - Meurice, Yannick A1 - Monroe, Christopher A1 - Nachman, Benjamin A1 - Pagano, Guido A1 - Preskill, John A1 - Rinaldi, Enrico A1 - Roggero, Alessandro A1 - Santiago, David I. A1 - Savage, Martin J. A1 - Siddiqi, Irfan A1 - Siopsis, George A1 - Van Zanten, David A1 - Wiebe, Nathan A1 - Yamauchi, Yukari A1 - Yeter-Aydeniz, Kübra A1 - Zorzetti, Silvia KW - FOS: Physical sciences KW - High Energy Physics - Lattice (hep-lat) KW - High Energy Physics - Phenomenology (hep-ph) KW - High Energy Physics - Theory (hep-th) KW - Nuclear Theory (nucl-th) KW - Quantum Physics (quant-ph) AB -

It is for the first time that Quantum Simulation for High Energy Physics (HEP) is studied in the U.S. decadal particle-physics community planning, and in fact until recently, this was not considered a mainstream topic in the community. This fact speaks of a remarkable rate of growth of this subfield over the past few years, stimulated by the impressive advancements in Quantum Information Sciences (QIS) and associated technologies over the past decade, and the significant investment in this area by the government and private sectors in the U.S. and other countries. High-energy physicists have quickly identified problems of importance to our understanding of nature at the most fundamental level, from tiniest distances to cosmological extents, that are intractable with classical computers but may benefit from quantum advantage. They have initiated, and continue to carry out, a vigorous program in theory, algorithm, and hardware co-design for simulations of relevance to the HEP mission. This community whitepaper is an attempt to bring this exciting and yet challenging area of research to the spotlight, and to elaborate on what the promises, requirements, challenges, and potential solutions are over the next decade and beyond.

UR - https://arxiv.org/abs/2204.03381 U5 - 10.48550/ARXIV.2204.03381 ER - TY - JOUR T1 - Self-Testing of a Single Quantum System: Theory and Experiment Y1 - 2022 A1 - Hu, Xiao-Min A1 - Xie, Yi A1 - Arora, Atul Singh A1 - Ai, Ming-Zhong A1 - Bharti, Kishor A1 - Zhang, Jie A1 - Wu, Wei A1 - Chen, Ping-Xing A1 - Cui, Jin-Ming A1 - Liu, Bi-Heng A1 - Huang, Yun-Feng A1 - Li, Chuan-Feng A1 - Guo, Guang-Can A1 - Roland, Jérémie A1 - Cabello, Adán A1 - Kwek, Leong-Chuan KW - Atomic Physics (physics.atom-ph) KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) AB -

Certifying individual quantum devices with minimal assumptions is crucial for the development of quantum technologies. Here, we investigate how to leverage single-system contextuality to realize self-testing. We develop a robust self-testing protocol based on the simplest contextuality witness for the simplest contextual quantum system, the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) inequality for the qutrit. We establish a lower bound on the fidelity of the state and the measurements (to an ideal configuration) as a function of the value of the witness under a pragmatic assumption on the measurements we call the KCBS orthogonality condition. We apply the method in an experiment with randomly chosen measurements on a single trapped 40Ca+ and near-perfect detection efficiency. The observed statistics allow us to self-test the system and provide the first experimental demonstration of quantum self-testing of a single system. Further, we quantify and report that deviations from our assumptions are minimal, an aspect previously overlooked by contextuality experiments.

UR - https://arxiv.org/abs/2203.09003 U5 - https://doi.org/10.48550/arXiv.2203.09003 ER - TY - JOUR T1 - Simulation Complexity of Many-Body Localized Systems Y1 - 2022 A1 - Adam Ehrenberg A1 - Abhinav Deshpande A1 - Christopher L. Baldwin A1 - Dmitry A. Abanin A1 - Alexey V. Gorshkov AB -

We use complexity theory to rigorously investigate the difficulty of classically simulating evolution under many-body localized (MBL) Hamiltonians. Using the defining feature that MBL systems have a complete set of quasilocal integrals of motion (LIOMs), we demonstrate a transition in the classical complexity of simulating such systems as a function of evolution time. On one side, we construct a quasipolynomial-time tensor-network-inspired algorithm for strong simulation of 1D MBL systems (i.e., calculating the expectation value of arbitrary products of local observables) evolved for any time polynomial in the system size. On the other side, we prove that even weak simulation, i.e. sampling, becomes formally hard after an exponentially long evolution time, assuming widely believed conjectures in complexity theory. Finally, using the consequences of our classical simulation results, we also show that the quantum circuit complexity for MBL systems is sublinear in evolution time. This result is a counterpart to a recent proof that the complexity of random quantum circuits grows linearly in time. 

UR - https://arxiv.org/abs/2205.12967 ER - TY - JOUR T1 - Simultaneous Stoquasticity JF - Phys. Rev. A Y1 - 2022 A1 - Jacob Bringewatt A1 - Brady, Lucas T. KW - FOS: Physical sciences KW - Quantum Physics (quant-ph) AB -

Stoquastic Hamiltonians play a role in the computational complexity of the local Hamiltonian problem as well as the study of classical simulability. In particular, stoquastic Hamiltonians can be straightforwardly simulated using Monte Carlo techniques. We address the question of whether two or more Hamiltonians may be made simultaneously stoquastic via a unitary transformation. This question has important implications for the complexity of simulating quantum annealing where quantum advantage is related to the stoquasticity of the Hamiltonians involved in the anneal. We find that for almost all problems no such unitary exists and show that the problem of determining the existence of such a unitary is equivalent to identifying if there is a solution to a system of polynomial (in)equalities in the matrix elements of the initial and transformed Hamiltonians. Solving such a system of equations is NP-hard. We highlight a geometric understanding of this problem in terms of a collection of generalized Bloch vectors.

VL - 105 UR - https://arxiv.org/abs/2202.08863 CP - 062601 U5 - https://doi.org/10.1103/PhysRevA.105.062601 ER - TY - JOUR T1 - Snowmass 2021 White Paper: The Windchime Project Y1 - 2022 A1 - The Windchime Collaboration A1 - Attanasio, Alaina A1 - Bhave, Sunil A. A1 - Blanco, Carlos A1 - Carney, Daniel A1 - Demarteau, Marcel A1 - Elshimy, Bahaa A1 - Febbraro, Michael A1 - Feldman, Matthew A. A1 - Ghosh, Sohitri A1 - Hickin, Abby A1 - Hong, Seongjin A1 - Lang, Rafael F. A1 - Lawrie, Benjamin A1 - Li, Shengchao A1 - Liu, Zhen A1 - Maldonado, Juan P. A. A1 - Marvinney, Claire A1 - Oo, Hein Zay Yar A1 - Pai, Yun-Yi A1 - Pooser, Raphael A1 - Qin, Juehang A1 - Sparmann, Tobias J. A1 - Taylor, Jacob M. A1 - Tian, Hao A1 - Tunnell, Christopher KW - Cosmology and Nongalactic Astrophysics (astro-ph.CO) KW - FOS: Physical sciences KW - High Energy Physics - Experiment (hep-ex) KW - High Energy Physics - Phenomenology (hep-ph) AB -

The absence of clear signals from particle dark matter in direct detection experiments motivates new approaches in disparate regions of viable parameter space. In this Snowmass white paper, we outline the Windchime project, a program to build a large array of quantum-enhanced mechanical sensors. The ultimate aim is to build a detector capable of searching for Planck mass-scale dark matter purely through its gravitational coupling to ordinary matter. In the shorter term, we aim to search for a number of other physics targets, especially some ultralight dark matter candidates. Here, we discuss the basic design, open R&D challenges and opportunities, current experimental efforts, and both short- and long-term physics targets of the Windchime project.

UR - https://arxiv.org/abs/2203.07242 U5 - 10.48550/ARXIV.2203.07242 ER - TY - JOUR T1 - Spectral Form Factor of a Quantum Spin Glass Y1 - 2022 A1 - Winer, Michael A1 - Barney, Richard A1 - Christopher L. Baldwin A1 - Galitski, Victor A1 - Swingle, Brian KW - Disordered Systems and Neural Networks (cond-mat.dis-nn) KW - FOS: Physical sciences KW - High Energy Physics - Theory (hep-th) KW - Statistical Mechanics (cond-mat.stat-mech) KW - Strongly Correlated Electrons (cond-mat.str-el) AB -

It is widely expected that systems which fully thermalize are chaotic in the sense of exhibiting random-matrix statistics of their energy level spacings, whereas integrable systems exhibit Poissonian statistics. In this paper, we investigate a third class: spin glasses. These systems are partially chaotic but do not achieve full thermalization due to large free energy barriers. We examine the level spacing statistics of a canonical infinite-range quantum spin glass, the quantum p-spherical model, using an analytic path integral approach. We find statistics consistent with a direct sum of independent random matrices, and show that the number of such matrices is equal to the number of distinct metastable configurations -- the exponential of the spin glass "complexity" as obtained from the quantum Thouless-Anderson-Palmer equations. We also consider the statistical properties of the complexity itself and identify a set of contributions to the path integral which suggest a Poissonian distribution for the number of metastable configurations. Our results show that level spacing statistics can probe the ergodicity-breaking in quantum spin glasses and provide a way to generalize the notion of spin glass complexity beyond models with a semi-classical limit.

UR - https://arxiv.org/abs/2203.12753 U5 - https://doi.org/10.48550/arXiv.2203.12753 ER - TY - JOUR T1 - Topological Edge Mode Tapering Y1 - 2022 A1 - Christopher J. Flower A1 - Sabyasachi Barik A1 - Sunil Mittal A1 - Mohammad Hafezi AB -

Mode tapering, or the gradual manipulation of the size of some mode, is a requirement for any system that aims to efficiently interface two or more subsystems of different mode sizes. While high efficiency tapers have been demonstrated, they often come at the cost of a large device footprint or challenging fabrication. Topological photonics, offering robustness to certain types of disorder as well as chirality, has proved to be a well-suited design principle for numerous applications in recent years. Here we present a new kind of mode taper realized through topological bandgap engineering. We numerically demonstrate a sixfold change in mode width over an extremely compact 8μm distance with near unity efficiency in the optical domain. With suppressed backscattering and no excitation of higher-order modes, such a taper could enable new progress in the development of scalable, multi-component systems in classical and quantum optics.

UR - https://arxiv.org/abs/2206.07056 ER - TY - JOUR T1 - Ultrastrong light-matter interaction in a photonic crystal Y1 - 2022 A1 - Vrajitoarea, Andrei A1 - Belyansky, Ron A1 - Lundgren, Rex A1 - Whitsitt, Seth A1 - Alexey V. Gorshkov A1 - Houck, Andrew A. KW - FOS: Physical sciences KW - Quantum Gases (cond-mat.quant-gas) KW - Quantum Physics (quant-ph) AB -

Harnessing the interaction between light and matter at the quantum level has been a central theme in the fields of atomic physics and quantum optics, with applications from quantum computation to quantum metrology. Combining complex interactions with photonic synthetic materials provides an opportunity to investigate novel quantum phases and phenomena, establishing interesting connections to condensed matter physics. Here we explore many-body phenomena with a single artificial atom coupled to the many discrete modes of a photonic crystal. This experiment reaches the ultrastrong light-matter coupling regime using the circuit QED paradigm, by galvanically coupling a highly nonlinear fluxonium qubit to a tight-binding lattice of microwave resonators. In this regime, the transport of a single photon is strongly modified by the presence of multi-photon bound states, owing to interactions that break particle number conservation. Exploiting the effective photon-photon interactions mediated by the qubit, the driven system can be configured as a continuous reservoir of strongly-correlated photons, a resource of interest for quantum networks. This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level and stabilizing entangled many-body phases of light.

UR - https://arxiv.org/abs/2209.14972 U5 - 10.48550/ARXIV.2209.14972 ER - TY - JOUR T1 - Unlimited non-causal correlations and their relation to non-locality JF - Quantum Y1 - 2022 A1 - Ämin Baumeler A1 - Amin Shiraz Gilani A1 - Jibran Rashid AB -

Non-causal correlations certify the lack of a definite causal order among localized space-time regions. In stark contrast to scenarios where a single region influences its own causal past, some processes that distribute non-causal correlations satisfy a series of natural desiderata: logical consistency, linear and reversible dynamics, and computational tameness. Here, we present such processes among arbitrary many regions where each region influences every other but itself, and show that the above desiderata are altogether insufficient to limit the amount of "acausality" of non-causal correlations. This leaves open the identification of a principle that forbids non-causal correlations. Our results exhibit qualitative and quantitative parallels with the non-local correlations due to Ardehali and Svetlichny.

VL - 6 U4 - 673 UR - https://arxiv.org/abs/2104.06234 U5 - https://doi.org/10.22331%2Fq-2022-03-29-673 ER - TY - JOUR T1 - Behavior of Analog Quantum Algorithms Y1 - 2021 A1 - Lucas T. Brady A1 - Lucas Kocia A1 - Przemyslaw Bienias A1 - Aniruddha Bapat A1 - Yaroslav Kharkov A1 - Alexey V. Gorshkov AB -

Analog quantum algorithms are formulated in terms of Hamiltonians rather than unitary gates and include quantum adiabatic computing, quantum annealing, and the quantum approximate optimization algorithm (QAOA). These algorithms are promising candidates for near-term quantum applications, but they often require fine tuning via the annealing schedule or variational parameters. In this work, we explore connections between these analog algorithms, as well as limits in which they become approximations of the optimal procedure.Notably, we explore how the optimal procedure approaches a smooth adiabatic procedure but with a superposed oscillatory pattern that can be explained in terms of the interactions between the ground state and first excited state that effect the coherent error cancellation of diabatic transitions. Furthermore, we provide numeric and analytic evidence that QAOA emulates this optimal procedure with the length of each QAOA layer equal to the period of the oscillatory pattern. Additionally, the ratios of the QAOA bangs are determined by the smooth, non-oscillatory part of the optimal procedure. We provide arguments for these phenomena in terms of the product formula expansion of the optimal procedure. With these arguments, we conclude that different analog algorithms can emulate the optimal protocol under different limits and approximations. Finally, we present a new algorithm for better approximating the optimal protocol using the analytic and numeric insights from the rest of the paper. In practice, numerically, we find that this algorithm outperforms standard QAOA and naive quantum annealing procedures. 

UR - https://arxiv.org/abs/2107.01218 ER - TY - JOUR T1 - Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models Y1 - 2021 A1 - Przemyslaw Bienias A1 - Igor Boettcher A1 - Ron Belyansky A1 - Alicia J. Kollár A1 - Alexey V. Gorshkov AB -

Circuit quantum electrodynamics is one of the most promising platforms for efficient quantum simulation and computation. In recent groundbreaking experiments, the immense flexibility of superconducting microwave resonators was utilized to realize hyperbolic lattices that emulate quantum physics in negatively curved space. Here we investigate experimentally feasible settings in which a few superconducting qubits are coupled to a bath of photons evolving on the hyperbolic lattice. We compare our numerical results for finite lattices with analytical results for continuous hyperbolic space on the Poincaré disk. We find good agreement between the two descriptions in the long-wavelength regime. We show that photon-qubit bound states have a curvature-limited size. We propose to use a qubit as a local probe of the hyperbolic bath, for example by measuring the relaxation dynamics of the qubit. We find that, although the boundary effects strongly impact the photonic density of states, the spectral density is well described by the continuum theory. We show that interactions between qubits are mediated by photons propagating along geodesics. We demonstrate that the photonic bath can give rise to geometrically-frustrated hyperbolic quantum spin models with finite-range or exponentially-decaying interaction.

UR - https://arxiv.org/abs/2105.06490 ER - TY - JOUR T1 - Cross-Platform Comparison of Arbitrary Quantum Computations Y1 - 2021 A1 - Daiwei Zhu A1 - Ze-Pei Cian A1 - Crystal Noel A1 - Andrew Risinger A1 - Debopriyo Biswas A1 - Laird Egan A1 - Yingyue Zhu A1 - Alaina M. Green A1 - Cinthia Huerta Alderete A1 - Nhung H. Nguyen A1 - Qingfeng Wang A1 - Andrii Maksymov A1 - Yunseong Nam A1 - Marko Cetina A1 - Norbert M. Linke A1 - Mohammad Hafezi A1 - Christopher Monroe AB -

As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information for a single QC. On the other hand, a comparison between different QCs on the same arbitrary circuit provides a lower-bound for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform fidelities.

UR - https://arxiv.org/abs/2107.11387 ER - TY - JOUR T1 - Crystallography of Hyperbolic Lattices Y1 - 2021 A1 - Igor Boettcher A1 - Alexey V. Gorshkov A1 - Alicia J. Kollár A1 - Joseph Maciejko A1 - Steven Rayan A1 - Ronny Thomale AB -

Hyperbolic lattices are a revolutionary platform for tabletop simulations of holography and quantum physics in curved space and facilitate efficient quantum error correcting codes. Their underlying geometry is non-Euclidean, and the absence of Bloch's theorem precludes a simple understanding of their band structure. Motivated by recent insights into hyperbolic band theory, we initiate a crystallography of hyperbolic lattices. We show that many hyperbolic lattices feature a hidden crystal structure characterized by unit cells, hyperbolic Bravais lattices, and associated symmetry groups. Using the mathematical framework of higher-genus Riemann surfaces and Fuchsian groups, we derive, for the first time, a list of example hyperbolic {p,q} lattices and their hyperbolic Bravais lattices, including five infinite families and several graphs relevant for experiments in circuit quantum electrodynamics and topolectrical circuits. Our results find application for both finite and infinite hyperbolic lattices. We describe a method to efficiently generate finite hyperbolic lattices of arbitrary size and explain why the present crystallography is the first step towards a complete band theory of hyperbolic lattices and apply it to construct Bloch wave Hamiltonians. This work lays the foundation for generalizing some of the most powerful concepts of solid state physics, such as crystal momentum and Brillouin zone, to the emerging field of hyperbolic lattices and tabletop simulations of gravitational theories, and reveals the connections to concepts from topology and algebraic geometry.

UR - https://arxiv.org/abs/2105.01087 ER - TY - JOUR T1 - Device-independent Randomness Expansion with Entangled Photons JF - Nat. Phys. Y1 - 2021 A1 - Lynden K. Shalm A1 - Yanbao Zhang A1 - Joshua C. Bienfang A1 - Collin Schlager A1 - Martin J. Stevens A1 - Michael D. Mazurek A1 - Carlos Abellán A1 - Waldimar Amaya A1 - Morgan W. Mitchell A1 - Mohammad A. Alhejji A1 - Honghao Fu A1 - Joel Ornstein A1 - Richard P. Mirin A1 - Sae Woo Nam A1 - Emanuel Knill AB -

With the growing availability of experimental loophole-free Bell tests, it has become possible to implement a new class of device-independent random number generators whose output can be certified to be uniformly random without requiring a detailed model of the quantum devices used. However, all of these experiments require many input bits in order to certify a small number of output bits, and it is an outstanding challenge to develop a system that generates more randomness than is used. Here, we devise a device-independent spot-checking protocol which uses only uniform bits as input. Implemented with a photonic loophole-free Bell test, we can produce 24% more certified output bits (1,181,264,237) than consumed input bits (953,301,640), which is 5 orders of magnitude more efficient than our previous work [arXiv:1812.07786]. The experiment ran for 91.0 hours, creating randomness at an average rate of 3606 bits/s with a soundness error bounded by 5.7×10−7 in the presence of classical side information. Our system will allow for greater trust in public sources of randomness, such as randomness beacons, and the protocols may one day enable high-quality sources of private randomness as the device footprint shrinks.

UR - https://arxiv.org/abs/1912.11158 U5 - https://doi.org/10.1038/s41567-020-01153-4 ER - TY - JOUR T1 - Discovering hydrodynamic equations of many-body quantum systems Y1 - 2021 A1 - Yaroslav Kharkov A1 - Oles Shtanko A1 - Alireza Seif A1 - Przemyslaw Bienias A1 - Mathias Van Regemortel A1 - Mohammad Hafezi A1 - Alexey V. Gorshkov AB -

Simulating and predicting dynamics of quantum many-body systems is extremely challenging, even for state-of-the-art computational methods, due to the spread of entanglement across the system. However, in the long-wavelength limit, quantum systems often admit a simplified description, which involves a small set of physical observables and requires only a few parameters such as sound velocity or viscosity. Unveiling the relationship between these hydrodynamic equations and the underlying microscopic theory usually requires a great effort by condensed matter theorists. In the present paper, we develop a new machine-learning framework for automated discovery of effective equations from a limited set of available data, thus bypassing complicated analytical derivations. The data can be generated from numerical simulations or come from experimental quantum simulator platforms. Using integrable models, where direct comparisons can be made, we reproduce previously known hydrodynamic equations, strikingly discover novel equations and provide their derivation whenever possible. We discover new hydrodynamic equations describing dynamics of interacting systems, for which the derivation remains an outstanding challenge. Our approach provides a new interpretable method to study properties of quantum materials and quantum simulators in non-perturbative regimes.

UR - https://arxiv.org/abs/2111.02385 ER - TY - JOUR T1 - EasyPQC: Verifying Post-Quantum Cryptography JF - ACM CCS 2021 Y1 - 2021 A1 - Manuel Barbosa A1 - Gilles Barthe A1 - Xiong Fan A1 - Benjamin Grégoire A1 - Shih-Han Hung A1 - Jonathan Katz A1 - Pierre-Yves Strub A1 - Xiaodi Wu A1 - Li Zhou AB -

EasyCrypt is a formal verification tool used extensively for formalizing concrete security proofs of cryptographic constructions. However, the EasyCrypt formal logics consider only classical attackers, which means that post-quantum security proofs cannot be formalized and machine-checked with this tool. In this paper we prove that a natural extension of the EasyCrypt core logics permits capturing a wide class of post-quantum cryptography proofs, settling a question raised by (Unruh, POPL 2019). Leveraging our positive result, we implement EasyPQC, an extension of EasyCrypt for post-quantum security proofs, and use EasyPQC to verify post-quantum security of three classic constructions: PRF-based MAC, Full Domain Hash and GPV08 identity-based encryption.

U5 - https://dx.doi.org/10.1145/3460120.3484567 ER - TY - JOUR T1 - Efficient quantum measurement of Pauli operators JF - Quantum Y1 - 2021 A1 - Ophelia Crawford A1 - Barnaby van Straaten A1 - Daochen Wang A1 - Thomas Parks A1 - Earl Campbell A1 - Stephen Brierley AB -

Estimating the expectation value of an observable is a fundamental task in quantum computation. Unfortunately, it is often impossible to obtain such estimates directly, as the computer is restricted to measuring in a fixed computational basis. One common solution splits the observable into a weighted sum of Pauli operators and measures each separately, at the cost of many measurements. An improved version first groups mutually commuting Pauli operators together and then measures all operators within each group simultaneously. The effectiveness of this depends on two factors. First, to enable simultaneous measurement, circuits are required to rotate each group to the computational basis. In our work, we present two efficient circuit constructions that suitably rotate any group of k commuting n-qubit Pauli operators using at most kn−k(k+1)/2 and O(kn/logk) two-qubit gates respectively. Second, metrics that justifiably measure the effectiveness of a grouping are required. In our work, we propose two natural metrics that operate under the assumption that measurements are distributed optimally among groups. Motivated by our new metrics, we introduce SORTED INSERTION, a grouping strategy that is explicitly aware of the weighting of each Pauli operator in the observable. Our methods are numerically illustrated in the context of the Variational Quantum Eigensolver, where the observables in question are molecular Hamiltonians. As measured by our metrics, SORTED INSERTION outperforms four conventional greedy colouring algorithms that seek the minimum number of groups.

VL - 5 UR - https://arxiv.org/abs/1908.06942 U5 - https://doi.org/10.22331/q-2021-01-20-385 ER - TY - JOUR T1 - Entangled quantum cellular automata, physical complexity, and Goldilocks rules JF - Quantum Science and Technology Y1 - 2021 A1 - Hillberry, Logan E A1 - Jones, Matthew T A1 - Vargas, David L A1 - Rall, Patrick A1 - Nicole Yunger Halpern A1 - Bao, Ning A1 - Notarnicola, Simone A1 - Montangero, Simone A1 - Carr, Lincoln D AB -

Cellular automata are interacting classical bits that display diverse emergent behaviors, from fractals to random-number generators to Turing-complete computation. We discover that quantum cellular automata (QCA) can exhibit complexity in the sense of the complexity science that describes biology, sociology, and economics. QCA exhibit complexity when evolving under "Goldilocks rules" that we define by balancing activity and stasis. Our Goldilocks rules generate robust dynamical features (entangled breathers), network structure and dynamics consistent with complexity, and persistent entropy fluctuations. Present-day experimental platforms -- Rydberg arrays, trapped ions, and superconducting qubits -- can implement our Goldilocks protocols, making testable the link between complexity science and quantum computation exposed by our QCA.

VL - 6 U4 - 045017 UR - http://dx.doi.org/10.1088/2058-9565/ac1c41 U5 - 10.1088/2058-9565/ac1c41 ER - TY - JOUR T1 - Frustration-induced anomalous transport and strong photon decay in waveguide QED JF - Phys. Rev. Research Y1 - 2021 A1 - Ron Belyansky A1 - Seth Whitsitt A1 - Rex Lundgren A1 - Yidan Wang A1 - Andrei Vrajitoarea A1 - Andrew A. Houck A1 - Alexey V. Gorshkov AB -

We study the propagation of photons in a one-dimensional environment consisting of two non-interacting species of photons frustratingly coupled to a single spin-1/2. The ultrastrong frustrated coupling leads to an extreme mixing of the light and matter degrees of freedom, resulting in the disintegration of the spin and a breakdown of the "dressed-spin", or polaron, description. Using a combination of numerical and analytical methods, we show that the elastic response becomes increasingly weak at the effective spin frequency, showing instead an increasingly strong and broadband response at higher energies. We also show that the photons can decay into multiple photons of smaller energies. The total probability of these inelastic processes can be as large as the total elastic scattering rate, or half of the total scattering rate, which is as large as it can be. The frustrated spin induces strong anisotropic photon-photon interactions that are dominated by inter-species interactions. Our results are relevant to state-of-the-art circuit and cavity quantum electrodynamics experiments.

VL - 3 UR - https://arxiv.org/abs/2007.03690 CP - 032058 U5 - https://doi.org/10.1103/PhysRevResearch.3.L032058 ER - TY - JOUR T1 - Interactive Protocols for Classically-Verifiable Quantum Advantage Y1 - 2021 A1 - Daiwei Zhu A1 - Gregory D. Kahanamoku-Meyer A1 - Laura Lewis A1 - Crystal Noel A1 - Or Katz A1 - Bahaa Harraz A1 - Qingfeng Wang A1 - Andrew Risinger A1 - Lei Feng A1 - Debopriyo Biswas A1 - Laird Egan A1 - Alexandru Gheorghiu A1 - Yunseong Nam A1 - Thomas Vidick A1 - Umesh Vazirani A1 - Norman Y. Yao A1 - Marko Cetina A1 - Christopher Monroe AB -

Achieving quantum computational advantage requires solving a classically intractable problem on a quantum device. Natural proposals rely upon the intrinsic hardness of classically simulating quantum mechanics; however, verifying the output is itself classically intractable. On the other hand, certain quantum algorithms (e.g. prime factorization via Shor's algorithm) are efficiently verifiable, but require more resources than what is available on near-term devices. One way to bridge the gap between verifiability and implementation is to use "interactions" between a prover and a verifier. By leveraging cryptographic functions, such protocols enable the classical verifier to enforce consistency in a quantum prover's responses across multiple rounds of interaction. In this work, we demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer. We execute two complementary protocols -- one based upon the learning with errors problem and another where the cryptographic construction implements a computational Bell test. To perform multiple rounds of interaction, we implement mid-circuit measurements on a subset of trapped ion qubits, with subsequent coherent evolution. For both protocols, the performance exceeds the asymptotic bound for classical behavior; maintaining this fidelity at scale would conclusively demonstrate verifiable quantum advantage.

UR - https://arxiv.org/abs/2112.05156 ER - TY - JOUR T1 - Lefschetz Thimble Quantum Monte Carlo for Spin Systems Y1 - 2021 A1 - T. C. Mooney A1 - Jacob Bringewatt A1 - Lucas T. Brady AB -

Monte Carlo simulations are often useful tools for modeling quantum systems, but in some cases they suffer from a sign problem, which manifests as an oscillating phase attached to the probabilities being sampled. This sign problem generally leads to an exponential slow down in the time taken by a Monte Carlo algorithm to reach any given level of accuracy, and it has been shown that completely solving the sign problem for an arbitrary quantum system is NP-hard. However, a variety of techniques exist for mitigating the sign problem in specific cases; in particular, the technique of deforming the Monte Carlo simulation's plane of integration onto Lefschetz thimbles (that is, complex hypersurfaces of stationary phase) has seen success for many problems of interest in the context of quantum field theories. We extend this methodology to discrete spin systems by utilizing spin coherent state path integrals to re-express the spin system's partition function in terms of continuous variables. This translation to continuous variables introduces additional challenges into the Lefschetz thimble method, which we address. We show that these techniques do indeed work to lessen the sign problem on some simple spin systems.

UR - https://arxiv.org/abs/2110.10699 ER - TY - JOUR T1 - The Lieb-Robinson light cone for power-law interactions Y1 - 2021 A1 - Minh C. Tran A1 - Andrew Y. Guo A1 - Christopher L. Baldwin A1 - Adam Ehrenberg A1 - Alexey V. Gorshkov A1 - Andrew Lucas AB -

The Lieb-Robinson theorem states that information propagates with a finite velocity in quantum systems on a lattice with nearest-neighbor interactions. What are the speed limits on information propagation in quantum systems with power-law interactions, which decay as 1/rα at distance r? Here, we present a definitive answer to this question for all exponents α>2d and all spatial dimensions d. Schematically, information takes time at least rmin{1,α−2d} to propagate a distance~r. As recent state transfer protocols saturate this bound, our work closes a decades-long hunt for optimal Lieb-Robinson bounds on quantum information dynamics with power-law interactions.

UR - https://arxiv.org/abs/2103.15828 ER - TY - JOUR T1 - Linear and continuous variable spin-wave processing using a cavity-coupled atomic ensemble Y1 - 2021 A1 - Kevin C. Cox A1 - Przemyslaw Bienias A1 - David H. Meyer A1 - Donald P. Fahey A1 - Paul D. Kunz A1 - Alexey V. Gorshkov AB -

Spin-wave excitations in ensembles of atoms are gaining attention as a quantum information resource. However, current techniques with atomic spin waves do not achieve universal quantum information processing. We conduct a theoretical analysis of methods to create a high-capacity universal quantum processor and network node using an ensemble of laser-cooled atoms, trapped in a one-dimensional periodic potential and coupled to a ring cavity. We describe how to establish linear quantum processing using a lambda-scheme in a rubidium-atom system, calculate the expected experimental operational fidelities. Second, we derive an efficient method to achieve linear controllability with a single ensemble of atoms, rather than two-ensembles as proposed in [K. C. Cox et al. Spin-Wave Quantum Computing with Atoms in a Single-Mode Cavity, preprint 2021]. Finally, we propose to use the spin-wave processor for continuous-variable quantum information processing and present a scheme to generate large dual-rail cluster states useful for deterministic computing. 

UR - https://arxiv.org/abs/2109.15246 ER - TY - JOUR T1 - Localization crossover and subdiffusive transport in a classical facilitated network model of a disordered, interacting quantum spin chain Y1 - 2021 A1 - Kai Klocke A1 - Christopher David White A1 - Michael Buchhold AB -

We consider the random-field Heisenberg model, a paradigmatic model for many-body localization (MBL), and add a Markovian dephasing bath coupled to the Anderson orbitals of the model's non-interacting limit. We map this system to a classical facilitated hopping model that is computationally tractable for large system sizes, and investigate its dynamics. The classical model exhibits a robust crossover between an ergodic (thermal) phase and a frozen (localized) phase. The frozen phase is destabilized by thermal subregions (bubbles), which thermalize surrounding sites by providing a fluctuating interaction energy and so enable off-resonance particle transport. Investigating steady state transport, we observe that the interplay between thermal and frozen bubbles leads to a clear transition between diffusive and subdiffusive regimes. This phenomenology both describes the MBL system coupled to a bath, and provides a classical analogue for the many-body localization transition in the corresponding quantum model, in that the classical model displays long local memory times. It also highlights the importance of the details of the bath coupling in studies of MBL systems coupled to thermal environments.

UR - https://arxiv.org/abs/2109.10926 ER - TY - JOUR T1 - Magic State Distillation from Entangled States Y1 - 2021 A1 - Ning Bao A1 - ChunJun Cao A1 - Vincent Paul Su AB -

Magic can be distributed non-locally in many-body entangled states, such as the low energy states of condensed matter systems. Using the Bravyi-Kitaev magic state distillation protocol, we find that non-local magic is distillable and can improve the distillation outcome. We analyze a few explicit examples and show that spin squeezing can be used to convert non-distillable states into distillable ones.
Our analysis also suggests that the conventional product input states assumed by magic distillation protocols are extremely atypical among general states with distillable magic. It further justifies the need for studying a diverse range of entangled inputs that yield magic states with high probability.

UR - https://arxiv.org/abs/2106.12591 ER - TY - JOUR T1 - Maximum Refractive Index of an Atomic Medium JF - Physical Review X Y1 - 2021 A1 - Andreoli, Francesco A1 - Michael Gullans A1 - High, Alexander A. A1 - Browaeys, Antoine A1 - Chang, Darrick E. AB -

It is interesting to observe that all optical materials with a positive refractive index have a value of index that is of order unity. Surprisingly, though, a deep understanding of the mechanisms that lead to this universal behavior seems to be lacking. Moreover, this observation is difficult to reconcile with the fact that a single, isolated atom is known to have a giant optical response, as characterized by a resonant scattering cross section that far exceeds its physical size. Here, we theoretically and numerically investigate the evolution of the optical properties of an ensemble of ideal atoms as a function of density, starting from the dilute gas limit, including the effects of multiple scattering and near-field interactions. Interestingly, despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density, but rather reaches a limiting value n≈1.7. We propose an explanation based upon strong-disorder renormalization group theory, in which the near-field interaction combined with random atomic positions results in an inhomogeneous broadening of atomic resonance frequencies. This mechanism ensures that regardless of the physical atomic density, light at any given frequency only interacts with at most a few near-resonant atoms per cubic wavelength, thus limiting the maximum index attainable. Our work is a promising first step to understand the limits of refractive index from a bottom-up, atomic physics perspective, and also introduces renormalization group as a powerful tool to understand the generally complex problem of multiple scattering of light overall.

VL - 11 UR - https://arxiv.org/abs/2006.01680 CP - 1 J1 - Phys. Rev. X U5 - 10.1103/PhysRevX.11.011026 ER - TY - JOUR T1 - Meta Hamiltonian Learning Y1 - 2021 A1 - Przemyslaw Bienias A1 - Alireza Seif A1 - Mohammad Hafezi AB -

Efficient characterization of quantum devices is a significant challenge critical for the development of large scale quantum computers. We consider an experimentally motivated situation, in which we have a decent estimate of the Hamiltonian, and its parameters need to be characterized and fine-tuned frequently to combat drifting experimental variables. We use a machine learning technique known as meta-learning to learn a more efficient optimizer for this task. We consider training with the nearest-neighbor Ising model and study the trained model's generalizability to other Hamiltonian models and larger system sizes. We observe that the meta-optimizer outperforms other optimization methods in average loss over test samples. This advantage follows from the meta-optimizer being less likely to get stuck in local minima, which highly skews the distribution of the final loss of the other optimizers. In general, meta-learning decreases the number of calls to the experiment and reduces the needed classical computational resources.

UR - https://arxiv.org/abs/2104.04453 ER - TY - JOUR T1 - Observation of a prethermal discrete time crystal Y1 - 2021 A1 - Antonis Kyprianidis A1 - Francisco Machado A1 - William Morong A1 - Patrick Becker A1 - Kate S. Collins A1 - Dominic V. Else A1 - Lei Feng A1 - Paul W. Hess A1 - Chetan Nayak A1 - Guido Pagano A1 - Norman Y. Yao A1 - Christopher Monroe AB -

The conventional framework for defining and understanding phases of matter requires thermodynamic equilibrium. Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization and the discovery of novel phases of matter, often catalyzed by driving the system periodically. The inherent heating from such Floquet drives can be tempered by including strong disorder in the system, but this can also mask the generality of non-equilibrium phases. In this work, we utilize a trapped-ion quantum simulator to observe signatures of a non-equilibrium driven phase without disorder: the prethermal discrete time crystal (PDTC). Here, many-body heating is suppressed not by disorder-induced many-body localization, but instead via high-frequency driving, leading to an expansive time window where non-equilibrium phases can emerge. We observe a number of key features that distinguish the PDTC from its many-body-localized disordered counterpart, such as the drive-frequency control of its lifetime and the dependence of time-crystalline order on the energy density of the initial state. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing and studying intrinsically out-of-equilibrium phases of matter.

UR - https://arxiv.org/abs/2102.01695 ER - TY - JOUR T1 - Observation of measurement-induced quantum phases in a trapped-ion quantum computer Y1 - 2021 A1 - Crystal Noel A1 - Pradeep Niroula A1 - Daiwei Zhu A1 - Andrew Risinger A1 - Laird Egan A1 - Debopriyo Biswas A1 - Marko Cetina A1 - Alexey V. Gorshkov A1 - Michael Gullans A1 - David A. Huse A1 - Christopher Monroe AB -

Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the "pure" phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the "mixed" or "coding" phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.

UR - https://arxiv.org/abs/2106.05881 ER - TY - JOUR T1 - Observation of Stark many-body localization without disorder Y1 - 2021 A1 - W. Morong A1 - F. Liu A1 - P. Becker A1 - K. S. Collins A1 - L. Feng A1 - A. Kyprianidis A1 - G. Pagano A1 - T. You A1 - Alexey V. Gorshkov A1 - C. Monroe AB -

Thermalization is a ubiquitous process of statistical physics, in which details of few-body observables are washed out in favor of a featureless steady state. Even in isolated quantum many-body systems, limited to reversible dynamics, thermalization typically prevails. However, in these systems, there is another possibility: many-body localization (MBL) can result in preservation of a non-thermal state. While disorder has long been considered an essential ingredient for this phenomenon, recent theoretical work has suggested that a quantum many-body system with a uniformly increasing field -- but no disorder -- can also exhibit MBL, resulting in `Stark MBL.' Here we realize Stark MBL in a trapped-ion quantum simulator and demonstrate its key properties: halting of thermalization and slow propagation of correlations. Tailoring the interactions between ionic spins in an effective field gradient, we directly observe their microscopic equilibration for a variety of initial states, and we apply single-site control to measure correlations between separate regions of the spin chain. Further, by engineering a varying gradient, we create a disorder-free system with coexisting long-lived thermalized and nonthermal regions. The results demonstrate the unexpected generality of MBL, with implications about the fundamental requirements for thermalization and with potential uses in engineering long-lived non-equilibrium quantum matter.

UR - https://arxiv.org/abs/2102.07250 ER - TY - JOUR T1 - Optimal scaling quantum linear systems solver via discrete adiabatic theorem Y1 - 2021 A1 - Pedro C. S. Costa A1 - Dong An A1 - Yuval R. Sanders A1 - Yuan Su A1 - Ryan Babbush A1 - Dominic W. Berry AB -

Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches enabled near-linear scaling in the condition number κ of the linear system, without requiring a complicated variable-time amplitude amplification procedure. However, the most efficient of those procedures is still asymptotically sub-optimal by a factor of log(κ). Here, we prove a rigorous form of the adiabatic theorem that bounds the error in terms of the spectral gap for intrinsically discrete time evolutions. We use this discrete adiabatic theorem to develop a quantum algorithm for solving linear systems that is asymptotically optimal, in the sense that the complexity is strictly linear in κ, matching a known lower bound on the complexity. Our O(κlog(1/ε)) complexity is also optimal in terms of the combined scaling in κ and the precision ε. Compared to existing suboptimal methods, our algorithm is simpler and easier to implement. Moreover, we determine the constant factors in the algorithm, which would be suitable for determining the complexity in terms of gate counts for specific applications. 

UR - https://arxiv.org/abs/2111.08152 ER - TY - JOUR T1 - Protocols for estimating multiple functions with quantum sensor networks: Geometry and performance JF - Physical Review Research Y1 - 2021 A1 - Jacob Bringewatt A1 - Boettcher, Igor A1 - Niroula, Pradeep A1 - Bienias, Przemyslaw A1 - Alexey V. Gorshkov AB -

We consider the problem of estimating multiple analytic functions of a set of local parameters via qubit sensors in a quantum sensor network. To address this problem, we highlight a generalization of the sensor symmetric performance bounds of Rubio et. al. [J. Phys. A: Math. Theor. 53 344001 (2020)] and develop a new optimized sequential protocol for measuring such functions. We compare the performance of both approaches to one another and to local protocols that do not utilize quantum entanglement, emphasizing the geometric significance of the coefficient vectors of the measured functions in determining the best choice of measurement protocol. We show that, in many cases, especially for a large number of sensors, the optimized sequential protocol results in more accurate measurements than the other strategies. In addition, in contrast to the the sensor symmetric approach, the sequential protocol is known to always be explicitly implementable. The sequential protocol is very general and has a wide range of metrological applications.

VL - 3 UR - https://arxiv.org/abs/2104.09540 U5 - 10.1103/physrevresearch.3.033011 ER - TY - JOUR T1 - Quantum circuits for the realization of equivalent forms of one-dimensional discrete-time quantum walks on near-term quantum hardware JF - Physical Review A Y1 - 2021 A1 - Singh, Shivani A1 - Alderete, C. Huerta A1 - Balu, Radhakrishnan A1 - Monroe, Christopher A1 - Linke, Norbert M. A1 - Chandrashekar, C. M. AB -

Quantum walks are a promising framework for developing quantum algorithms and quantum simulations. They represent an important test case for the application of quantum computers. Here we present different forms of discrete-time quantum walks (DTQWs) and show their equivalence for physical realizations. Using an appropriate digital mapping of the position space on which a walker evolves to the multiqubit states of a quantum processor, we present different configurations of quantum circuits for the implementation of DTQWs in one-dimensional position space. We provide example circuits for a five-qubit processor and address scalability to higher dimensions as well as larger quantum processors.

VL - 104 UR - https://arxiv.org/abs/2001.11197 U5 - https://doi.org/10.1103/PhysRevA.104.062401 ER - TY - JOUR T1 - Quantum Machine Learning for Finance Y1 - 2021 A1 - Marco Pistoia A1 - Syed Farhan Ahmad A1 - Akshay Ajagekar A1 - Alexander Buts A1 - Shouvanik Chakrabarti A1 - Dylan Herman A1 - Shaohan Hu A1 - Andrew Jena A1 - Pierre Minssen A1 - Pradeep Niroula A1 - Arthur Rattew A1 - Yue Sun A1 - Romina Yalovetzky AB -

Quantum computers are expected to surpass the computational capabilities of classical computers during this decade, and achieve disruptive impact on numerous industry sectors, particularly finance. In fact, finance is estimated to be the first industry sector to benefit from Quantum Computing not only in the medium and long terms, but even in the short term. This review paper presents the state of the art of quantum algorithms for financial applications, with particular focus to those use cases that can be solved via Machine Learning.

UR - https://arxiv.org/abs/2109.04298 ER - TY - JOUR T1 - Quantum routing with fast reversals JF - Quantum Y1 - 2021 A1 - Aniruddha Bapat A1 - Andrew M. Childs A1 - Alexey V. Gorshkov A1 - Samuel King A1 - Eddie Schoute A1 - Hrishee Shastri AB -

We present methods for implementing arbitrary permutations of qubits under interaction constraints. Our protocols make use of previous methods for rapidly reversing the order of qubits along a path. Given nearest-neighbor interactions on a path of length n, we show that there exists a constant ϵ≈0.034 such that the quantum routing time is at most (1−ϵ)n, whereas any swap-based protocol needs at least time n−1. This represents the first known quantum advantage over swap-based routing methods and also gives improved quantum routing times for realistic architectures such as grids. Furthermore, we show that our algorithm approaches a quantum routing time of 2n/3 in expectation for uniformly random permutations, whereas swap-based protocols require time n asymptotically. Additionally, we consider sparse permutations that route k≤n qubits and give algorithms with quantum routing time at most n/3+O(k2) on paths and at most 2r/3+O(k2) on general graphs with radius r.

VL - 5 UR - https://arxiv.org/abs/2103.03264 U5 - https://doi.org/10.22331/q-2021-08-31-533 ER - TY - JOUR T1 - Quench Dynamics of a Fermi Gas with Strong Long-Range Interactions JF - Phys. Rev. X Y1 - 2021 A1 - Elmer Guardado-Sanchez A1 - Benjamin M. Spar A1 - Peter Schauss A1 - Ron Belyansky A1 - Jeremy T. Young A1 - Przemyslaw Bienias A1 - Alexey V. Gorshkov A1 - Thomas Iadecola A1 - Waseem S. Bakr AB -

We induce strong non-local interactions in a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approximately described by a t−V model on a square lattice where the fermions experience isotropic nearest-neighbor interactions and are free to hop only along one direction. We measure the interactions using many-body Ramsey interferometry and study the lifetime of the gas in the presence of tunneling, finding that tunneling does not reduce the lifetime. To probe the interplay of non-local interactions with tunneling, we investigate the short-time relaxation dynamics of charge density waves in the gas. We find that strong nearest-neighbor interactions slow down the relaxation. Our work opens the door for quantum simulations of systems with strong non-local interactions such as extended Fermi-Hubbard models.

VL - 11 UR - https://arxiv.org/abs/2010.05871 U5 - https://doi.org/10.1103/PhysRevX.11.021036 ER - TY - JOUR T1 - Singularities in nearly-uniform 1D condensates due to quantum diffusion Y1 - 2021 A1 - Christopher L. Baldwin A1 - P. Bienias A1 - Alexey V. Gorshkov A1 - Michael Gullans A1 - M. Maghrebi AB -

Dissipative systems can often exhibit wavelength-dependent loss rates. One prominent example is Rydberg polaritons formed by electromagnetically-induced transparency, which have long been a leading candidate for studying the physics of interacting photons and also hold promise as a platform for quantum information. In this system, dissipation is in the form of quantum diffusion, i.e., proportional to k2 (k being the wavevector) and vanishing at long wavelengths as k→0. Here, we show that one-dimensional condensates subject to this type of loss are unstable to long-wavelength density fluctuations in an unusual manner: after a prolonged period in which the condensate appears to relax to a uniform state, local depleted regions quickly form and spread ballistically throughout the system. We connect this behavior to the leading-order equation for the nearly-uniform condensate -- a dispersive analogue to the Kardar-Parisi-Zhang (KPZ) equation -- which develops singularities in finite time. Furthermore, we show that the wavefronts of the depleted regions are described by purely dissipative solitons within a pair of hydrodynamic equations, with no counterpart in lossless condensates. We close by discussing conditions under which such singularities and the resulting solitons can be physically realized.

UR - https://arxiv.org/abs/2103.06293 ER - TY - JOUR T1 - Spin-Wave Quantum Computing with Atoms in a Single-Mode Cavity Y1 - 2021 A1 - Kevin C. Cox A1 - Przemyslaw Bienias A1 - David H. Meyer A1 - Paul D. Kunz A1 - Donald P. Fahey A1 - Alexey V. Gorshkov AB -

We present a method for network-capable quantum computing that relies on holographic spin-wave excitations stored collectively in ensembles of qubits. We construct an orthogonal basis of spin waves in a one-dimensional array and show that high-fidelity universal linear controllability can be achieved using only phase shifts, applied in both momentum and position space. Neither single-site addressability nor high single-qubit cooperativity is required, and the spin waves can be read out with high efficiency into a single cavity mode for quantum computing and networking applications. 

UR - https://arxiv.org/abs/2109.15252 ER - TY - JOUR T1 - Surface code compilation via edge-disjoint paths Y1 - 2021 A1 - Michael Beverland A1 - Vadym Kliuchnikov A1 - Eddie Schoute AB -

We provide an efficient algorithm to compile quantum circuits for fault-tolerant execution. We target surface codes, which form a 2D grid of logical qubits with nearest-neighbor logical operations. Embedding an input circuit's qubits in surface codes can result in long-range two-qubit operations across the grid. We show how to prepare many long-range Bell pairs on qubits connected by edge-disjoint paths of ancillas in constant depth which can be used to perform these long-range operations. This forms one core part of our Edge-Disjoint Paths Compilation (EDPC) algorithm, by easily performing parallel long-range Clifford operations in constant depth. It also allows us to establish a connection between surface code compilation and several well-studied edge-disjoint paths problems. Similar techniques allow us to perform non-Clifford single-qubit rotations far from magic state distillation factories. In this case, we can easily find the maximum set of paths by a max-flow reduction, which forms the other major part of our EDPC algorithm. We compare EDPC to other compilation approaches including a SWAP-based algorithm, and find significantly improved performance for circuits built from parallel CNOTs, and for circuits which implement the multi-controlled X gate.

UR - https://arxiv.org/abs/2110.11493 ER - TY - JOUR T1 - Tunable three-body loss in a nonlinear Rydberg medium JF - Phys. Rev. Lett., in press Y1 - 2021 A1 - Dalia P. Ornelas Huerta A1 - Przemyslaw Bienias A1 - Alexander N. Craddock A1 - Michael Gullans A1 - Andrew J. Hachtel A1 - Marcin Kalinowski A1 - Mary E. Lyon A1 - Alexey V. Gorshkov A1 - Steven L. Rolston A1 - J. V. Porto AB -

Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control can be applied to both coherent and dissipative interactions, which provides the potential to generate novel few-photon states. Recently it has been shown that Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions. In this work, we study a three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings. Our numerical simulations of the full three-body wavefunction and analytical estimates based on Fermi's Golden Rule strongly suggest that the observed features in the outgoing photonic correlations are caused by the resonant enhancement of the three-body losses.

UR - https://arxiv.org/abs/2009.13599 ER - TY - JOUR T1 - Approximate optimization of MAXCUT with a local spin algorithm Y1 - 2020 A1 - Aniruddha Bapat A1 - Stephen P. Jordan AB -

Local tensor methods are a class of optimization algorithms that was introduced in [Hastings,arXiv:1905.07047v2][1] as a classical analogue of the quantum approximate optimization algorithm (QAOA). These algorithms treat the cost function as a Hamiltonian on spin degrees of freedom and simulate the relaxation of the system to a low energy configuration using local update rules on the spins. Whereas the emphasis in [1] was on theoretical worst-case analysis, we here investigate performance in practice through benchmarking experiments on instances of the MAXCUT problem.Through heuristic arguments we propose formulas for choosing the hyperparameters of the algorithm which are found to be in good agreement with the optimal choices determined from experiment. We observe that the local tensor method is closely related to gradient descent on a relaxation of maxcut to continuous variables, but consistently outperforms gradient descent in all instances tested. We find time to solution achieved by the local tensor method is highly uncorrelated with that achieved by a widely used commercial optimization package; on some MAXCUT instances the local tensor method beats the commercial solver in time to solution by up to two orders of magnitude and vice-versa. Finally, we argue that the local tensor method closely follows discretized, imaginary-time dynamics of the system under the problem Hamiltonian.

UR - https://arxiv.org/abs/2008.06054 ER - TY - JOUR T1 - Asymmetric blockade and multi-qubit gates via dipole-dipole interactions Y1 - 2020 A1 - Jeremy T. Young A1 - Przemyslaw Bienias A1 - Ron Belyansky A1 - Adam M. Kaufman A1 - Alexey V. Gorshkov AB -

Due to their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multi-qubit Rydberg-blockade gates which involve both many control qubits and many target qubits simultaneously. This is achieved by using strong microwave fields to dress nearby Rydberg states, leading to asymmetric blockade in which control-target interactions are much stronger than control-control and target-target interactions. The implementation of these multi-qubit gates can drastically simplify both quantum algorithms and state preparation. To illustrate this, we show that a 25-atom GHZ state can be created using only three gates with an error of 7.8%.

UR - https://arxiv.org/abs/2006.02486 ER - TY - JOUR T1 - Collisions of room-temperature helium with ultracold lithium and the van der Waals bound state of HeLi JF - Phys. Rev. A Y1 - 2020 A1 - Constantinos Makrides A1 - Daniel S Barker A1 - James A Fedchak A1 - Julia Scherschligt A1 - Stephen Eckel A1 - Eite Tiesinga AB -

We have computed the thermally averaged total, elastic rate coefficient for the collision of a room-temperature helium atom with an ultracold lithium atom. This rate coefficient has been computed as part of the characterization of a cold-atom vacuum sensor based on laser-cooled Li 6 or Li 7 atoms that will operate in the ultrahigh-vacuum (p< 10− 6 Pa) and extreme-high-vacuum (p< 10− 10 Pa) regimes. The analysis involves computing the X 2 Σ+ HeLi Born-Oppenheimer potential followed by the numerical solution of the relevant radial Schrödinger equation. The potential is computed using a single-reference-coupled-cluster electronic-structure method with basis sets of different completeness in order to characterize our uncertainty budget. We predict that the rate coefficient for a 300 K helium gas and a 1 μ K Li gas is 1.467 (13)× 10− 9 cm 3/s for He 4+ Li 6 and 1.471 (13)× 10− 9 cm 3/s for He 4+ Li 7, where the …

VL - 101 CP - 012702 U5 - https://doi.org/10.1103/PhysRevA.101.012702 ER - TY - JOUR T1 - Confronting lattice parton distributions with global QCD analysis Y1 - 2020 A1 - Jacob Bringewatt A1 - N. Sato A1 - W. Melnitchouk A1 - Jian-Wei Qiu A1 - F. Steffens A1 - M. Constantinou AB -

We present the first Monte Carlo based global QCD analysis of spin-averaged and spin-dependent parton distribution functions (PDFs) that includes nucleon isovector matrix elements in coordinate space from lattice QCD. We investigate the degree of universality of the extracted PDFs when the lattice and experimental data are treated under the same conditions within the Bayesian likelihood analysis. For the unpolarized sector, we find rather weak constraints from the current lattice data on the phenomenological PDFs, and difficulties in describing the lattice matrix elements at large spatial distances. In contrast, for the polarized PDFs we find good agreement between experiment and lattice data, with the latter providing significant constraints on the spin-dependent isovector quark and antiquark distributions

UR - https://arxiv.org/abs/2010.00548 ER - TY - JOUR T1 - Critical Theory for the Breakdown of Photon Blockade Y1 - 2020 A1 - Jonathan B. Curtis A1 - Igor Boettcher A1 - Jeremy T. Young A1 - Mohammad F. Maghrebi A1 - Howard Carmichael A1 - Alexey V. Gorshkov A1 - Michael Foss-Feig AB -

Photon blockade is the result of the interplay between the quantized nature of light and strong optical nonlinearities, whereby strong photon-photon repulsion prevents a quantum optical system from absorbing multiple photons. We theoretically study a single atom coupled to the light field, described by the resonantly driven Jaynes--Cummings model, in which case the photon blockade breaks down in a second order phase transition at a critical drive strength. We show that this transition is associated to the spontaneous breaking of an anti-unitary PT-symmetry. Within a semiclassical approximation we calculate the expectation values of observables in the steady state. We then move beyond the semiclassical approximation and approach the critical point from the disordered (blockaded) phase by reducing the Lindblad quantum master equation to a classical rate equation that we solve. The width of the steady-state distribution in Fock space is found to diverge as we approach the critical point with a simple power-law, allowing us to calculate the critical scaling of steady state observables without invoking mean-field theory. We propose a simple physical toy model for biased diffusion in the space of occupation numbers, which captures the universal properties of the steady state. We list several experimental platforms where this phenomenon may be observed.

UR - https://arxiv.org/abs/2006.05593 ER - TY - JOUR T1 - Distinct Critical Behaviors from the Same State in Quantum Spin and Population Dynamics Perspectives Y1 - 2020 A1 - Christopher L. Baldwin A1 - S. Shivam A1 - S. L. Sondhi A1 - M. Kardar AB -

There is a deep connection between the ground states of transverse-field spin systems and the late-time distributions of evolving viral populations -- within simple models, both are obtained from the principal eigenvector of the same matrix. However, that vector is the wavefunction amplitude in the quantum spin model, whereas it is the probability itself in the population model. We show that this seemingly minor difference has significant consequences: phase transitions which are discontinuous in the spin system become continuous when viewed through the population perspective, and transitions which are continuous become governed by new critical exponents. We introduce a more general class of models which encompasses both cases, and that can be solved exactly in a mean-field limit. Numerical results are also presented for a number of one-dimensional chains with power-law interactions. We see that well-worn spin models of quantum statistical mechanics can contain unexpected new physics and insights when treated as population-dynamical models and beyond, motivating further studies. 

UR - https://arxiv.org/abs/2009.05064 ER - TY - JOUR T1 - Effective gaps are not effective: quasipolynomial classical simulation of obstructed stoquastic Hamiltonians Y1 - 2020 A1 - Jacob Bringewatt A1 - Michael Jarret AB -

All known examples confirming the possibility of an exponential separation between classical simulation algorithms and stoquastic adiabatic quantum computing (AQC) exploit symmetries that constrain adiabatic dynamics to effective, symmetric subspaces. The symmetries produce large effective eigenvalue gaps, which in turn make adiabatic computation efficient. We present a classical algorithm to efficiently sample from the effective subspace of a k-local stoquastic Hamiltonian H, without a priori knowledge of its symmetries (or near-symmetries). Our algorithm maps any k-local Hamiltonian to a graph G=(V,E) with |V|=O(poly(n)) where n is the number of qubits. Given the well-known result of Babai, we exploit graph isomorphism to study the automorphisms of G and arrive at an algorithm quasi-polynomial in |V| for producing samples from the effective subspace eigenstates of H. Our results rule out exponential separations between stoquastic AQC and classical computation that arise from hidden symmetries in k-local Hamiltonians. Furthermore, our graph representation of H is not limited to stoquastic Hamiltonians and may rule out corresponding obstructions in non-stoquastic cases, or be useful in studying additional properties of k-local Hamiltonians.

UR - https://arxiv.org/abs/2004.08681 ER - TY - JOUR T1 - Entanglement Bounds on the Performance of Quantum Computing Architectures JF - Phys. Rev. Research Y1 - 2020 A1 - Zachary Eldredge A1 - Leo Zhou A1 - Aniruddha Bapat A1 - James R. Garrison A1 - Abhinav Deshpande A1 - Frederic T. Chong A1 - Alexey V. Gorshkov AB -

There are many possible architectures for future quantum computers that designers will need to choose between. However, the process of evaluating a particular connectivity graph's performance as a quantum architecture can be difficult. In this paper, we establish a connection between a quantity known as the isoperimetric number and a lower bound on the time required to create highly entangled states. The metric we propose counts resources based on the use of two-qubit unitary operations, while allowing for arbitrarily fast measurements and classical feedback. We describe how these results can be applied to the evaluation of the hierarchical architecture proposed in Phys. Rev. A 98, 062328 (2018). We also show that the time-complexity bound we place on the creation of highly-entangled states can be saturated up to a multiplicative factor logarithmic in the number of qubits.

VL - 2 UR - https://arxiv.org/abs/1908.04802 CP - 033316 U5 - https://doi.org/10.1103/PhysRevResearch.2.033316 ER - TY - JOUR T1 - Exotic photonic molecules via Lennard-Jones-like potentials JF - Phys. Rev. Lett. Y1 - 2020 A1 - Przemyslaw Bienias A1 - Michael Gullans A1 - Marcin Kalinowski A1 - Alexander N. Craddock A1 - Dalia P. Ornelas-Huerta A1 - Steven L. Rolston A1 - J. V. Porto A1 - Alexey V. Gorshkov AB -

Ultracold systems offer an unprecedented level of control of interactions between atoms. An important challenge is to achieve a similar level of control of the interactions between photons. Towards this goal, we propose a realization of a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT). This potential is achieved by tuning Rydberg states to a F{ö}rster resonance with other Rydberg states. We consider few-body problems in 1D and 2D geometries and show the existence of self-bound clusters ("molecules") of photons. We demonstrate that for a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state. This leads to phenomena without counterparts in conventional systems: For example, three photons in 2D preferentially arrange themselves in a line-configuration rather than in an equilateral-triangle configuration. Our result opens a new avenue for studies of many-body phenomena with strongly interacting photons.

VL - 125 UR - https://arxiv.org/abs/2003.07864 CP - 093601 U5 - https://doi.org/10.1103/PhysRevLett.125.093601 ER - TY - JOUR T1 - Experimental Low-Latency Device-Independent Quantum Randomness JF - Phys. Rev. Lett. Y1 - 2020 A1 - Yanbao Zhang A1 - Lynden K. Shalm A1 - Joshua C. Bienfang A1 - Martin J. Stevens A1 - Michael D. Mazurek A1 - Sae Woo Nam A1 - Carlos Abellán A1 - Waldimar Amaya A1 - Morgan W. Mitchell A1 - Honghao Fu A1 - Carl Miller A1 - Alan Mink A1 - Emanuel Knill AB -

Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of 512 bits with an average experiment time of less than 5 min per block and with certified error bounded by 2−64≈5.42×10−20.

VL - 124 UR - https://arxiv.org/abs/1812.07786 CP - 010505 U5 - https://doi.org/10.1103/PhysRevLett.124.010505 ER - TY - JOUR T1 - Fault-Tolerant Operation of a Quantum Error-Correction Code Y1 - 2020 A1 - Laird Egan A1 - Dripto M. Debroy A1 - Crystal Noel A1 - Andrew Risinger A1 - Daiwei Zhu A1 - Debopriyo Biswas A1 - Michael Newman A1 - Muyuan Li A1 - Kenneth R. Brown A1 - Marko Cetina A1 - Christopher Monroe AB -

Quantum error correction protects fragile quantum information by encoding it in a larger quantum system whose extra degrees of freedom enable the detection and correction of errors. An encoded logical qubit thus carries increased complexity compared to a bare physical qubit. Fault-tolerant protocols contain the spread of errors and are essential for realizing error suppression with an error-corrected logical qubit. Here we experimentally demonstrate fault-tolerant preparation, rotation, error syndrome extraction, and measurement on a logical qubit encoded in the 9-qubit Bacon-Shor code. For the logical qubit, we measure an average fault-tolerant preparation and measurement error of 0.6% and a transversal Clifford gate with an error of 0.3% after error correction. The result is an encoded logical qubit whose logical fidelity exceeds the fidelity of the entangling operations used to create it. We compare these operations with non-fault-tolerant protocols capable of generating arbitrary logical states, and observe the expected increase in error. We directly measure the four Bacon-Shor stabilizer generators and are able to detect single qubit Pauli errors. These results show that fault-tolerant quantum systems are currently capable of logical primitives with error rates lower than their constituent parts. With the future addition of intermediate measurements, the full power of scalable quantum error-correction can be achieved. 

UR - https://arxiv.org/abs/2009.11482 ER - TY - MGZN T1 - Impossibility of Quantum Virtual Black-Box Obfuscation of Classical Circuits Y1 - 2020 A1 - Gorjan Alagic A1 - Zvika Brakerski A1 - Yfke Dulek A1 - Christian Schaffner AB -

Virtual black-box obfuscation is a strong cryptographic primitive: it encrypts a circuit while maintaining its full input/output functionality. A remarkable result by Barak et al. (Crypto 2001) shows that a general obfuscator that obfuscates classical circuits into classical circuits cannot exist. A promising direction that circumvents this impossibility result is to obfuscate classical circuits into quantum states, which would potentially be better capable of hiding information about the obfuscated circuit. We show that, under the assumption that learning-with-errors (LWE) is hard for quantum computers, this quantum variant of virtual black-box obfuscation of classical circuits is generally impossible. On the way, we show that under the presence of dependent classical auxiliary input, even the small class of classical point functions cannot be quantum virtual black-box obfuscated.

UR - https://arxiv.org/abs/2005.06432 ER - TY - JOUR T1 - Localization and criticality in antiblockaded 2D Rydberg atom arrays Y1 - 2020 A1 - Fangli Liu A1 - Zhi-Cheng Yang A1 - Przemyslaw Bienias A1 - Thomas Iadecola A1 - Alexey V. Gorshkov AB -

Controllable Rydberg atom arrays have provided new insights into fundamental properties of quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional disorder on Rydberg atoms trapped in a 2D square lattice under anti-blockade (facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The critical regime's existence depends crucially upon the singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench dynamics to probe the three different regimes experimentally. 

UR - https://arxiv.org/abs/2012.03946 ER - TY - JOUR T1 - Mechanical Quantum Sensing in the Search for Dark Matter Y1 - 2020 A1 - D. Carney A1 - G. Krnjaic A1 - D. C. Moore A1 - C. A. Regal A1 - G. Afek A1 - S. Bhave A1 - B. Brubaker A1 - T. Corbitt A1 - J. Cripe A1 - N. Crisosto A1 - A.Geraci A1 - S. Ghosh A1 - J. G. E. Harris A1 - A. Hook A1 - E. W. Kolb A1 - J. Kunjummen A1 - R. F. Lang A1 - T. Li A1 - T. Lin A1 - Z. Liu A1 - J. Lykken A1 - L. Magrini A1 - J. Manley A1 - N. Matsumoto A1 - A. Monte A1 - F. Monteiro A1 - T. Purdy A1 - C. J. Riedel A1 - R. Singh A1 - S. Singh A1 - K. Sinha A1 - J. M. Taylor A1 - J. Qin A1 - D. J. Wilson A1 - Y. Zhao AB -

Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter strongly motivate the development of new, ultra-sensitive detector technologies. Paradigmatic advances in the control and readout of massive mechanical systems, in both the classical and quantum regimes, have enabled unprecedented levels of sensitivity. In this white paper, we outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms.

UR - https://arxiv.org/abs/2008.06074 ER - TY - JOUR T1 - Minimal model for fast scrambling JF - Phys. Rev. Lett. Y1 - 2020 A1 - Ron Belyansky A1 - Przemyslaw Bienias A1 - Yaroslav A. Kharkov A1 - Alexey V. Gorshkov A1 - Brian Swingle AB -

We study quantum information scrambling in spin models with both long-range all-to-all and short-range interactions. We argue that a simple global, spatially homogeneous interaction together with local chaotic dynamics is sufficient to give rise to fast scrambling, which describes the spread of quantum information over the entire system in a time that is logarithmic in the system size. This is illustrated in two exactly solvable models: (1) a random circuit with Haar random local unitaries and a global interaction and (2) a classical model of globally coupled non-linear oscillators. We use exact numerics to provide further evidence by studying the time evolution of an out-of-time-order correlator and entanglement entropy in spin chains of intermediate sizes. Our results can be verified with state-of-the-art quantum simulators.

VL - 125 UR - https://arxiv.org/abs/2005.05362 CP - 130601 U5 - https://doi.org/10.1103/PhysRevLett.125.130601 ER - TY - JOUR T1 - More of the Bulk from Extremal Area Variations JF - Classical and Quantum Gravity Y1 - 2020 A1 - Ning Bao A1 - ChunJun Cao A1 - Sebastian Fischetti A1 - Jason Pollack A1 - Yibo Zhong AB -

It was shown recently, building on work of Alexakis, Balehowksy, and Nachman that the geometry of (some portion of) a manifold with boundary is uniquely fixed by the areas of a foliation of two-dimensional disk-shaped surfaces anchored to the boundary. In the context of AdS/CFT, this implies that (a portion of) a four-dimensional bulk geometry can be fixed uniquely from the entanglement entropies of disk-shaped boundary regions, subject to several constraints. In this Note, we loosen some of these constraints, in particular allowing for the bulk foliation of extremal surfaces to be local and removing the constraint of disk topology; these generalizations ensure uniqueness of more of the deep bulk geometry by allowing for e.g. surfaces anchored on disconnected asymptotic boundaries, or HRT surfaces past a phase transition. We also explore in more depth the generality of the local foliation requirement, showing that even in a highly dynamical geometry like AdS-Vaidya it is satisfied.

VL - 38 U4 - 047001 UR - https://arxiv.org/abs/2009.07850 CP - 4 U5 - https://iopscience.iop.org/article/10.1088/1361-6382/abcfd0/pdf ER - TY - JOUR T1 - Nearly optimal time-independent reversal of a spin chain JF - accepted for publication in Physical Review Research Y1 - 2020 A1 - Aniruddha Bapat A1 - Eddie Schoute A1 - Alexey V. Gorshkov A1 - Andrew M. Childs AB -

We propose a time-independent Hamiltonian protocol for the reversal of qubit ordering in a chain of N spins. Our protocol has an easily implementable nearest-neighbor, transverse-field Ising model Hamiltonian with time-independent, non-uniform couplings. Under appropriate normalization, we implement this state reversal three times faster than a naive approach using SWAP gates, in time comparable to a protocol of Raussendorf [Phys. Rev. A 72, 052301 (2005)] that requires dynamical control. We also prove lower bounds on state reversal by using results on the entanglement capacity of Hamiltonians and show that we are within a factor 1.502(1+1/N) of the shortest time possible. Our lower bound holds for all nearest-neighbor qubit protocols with arbitrary finite ancilla spaces and local operations and classical communication. Finally, we extend our protocol to an infinite family of nearest-neighbor, time-independent Hamiltonian protocols for state reversal. This includes chains with nearly uniform coupling that may be especially feasible for experimental implementation. 

UR - https://arxiv.org/abs/2003.02843 ER - TY - JOUR T1 - Noncommuting conserved charges in quantum many-body thermalization JF - Phys. Rev. E Y1 - 2020 A1 - Nicole Yunger Halpern A1 - Michael E. Beverland A1 - Amir Kalev AB -

In statistical mechanics, a small system exchanges conserved quantities—heat, particles, electric charge, etc.—with a bath. The small system thermalizes to the canonical ensemble or the grand canonical ensemble, etc., depending on the quantities. The conserved quantities are represented by operators usually assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small system's long-time state was dubbed “the non-Abelian thermal state (NATS).” We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which forms the system of interest. The conserved quantities manifest as spin components. Heisenberg interactions push the conserved quantities between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to near the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting conserved quantities from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter.

VL - 101 UR - https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.042117 CP - 042117 U5 - https://doi.org/10.1103/PhysRevE.101.042117 ER - TY - JOUR T1 - On-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble Y1 - 2020 A1 - Dalia P. Ornelas-Huerta A1 - Alexander N. Craddock A1 - Elizabeth A. Goldschmidt A1 - Andrew J. Hachtel A1 - Yidan Wang A1 - P. Bienias A1 - Alexey V. Gorshkov A1 - Steve L. Rolston A1 - James V. Porto AB -

Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), g(2)=2.0(1.5)×10−4, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources. 

UR - https://arxiv.org/abs/2003.02202 ER - TY - JOUR T1 - Optimal Measurement of Field Properties with Quantum Sensor Networks Y1 - 2020 A1 - Timothy Qian A1 - Jacob Bringewatt A1 - Igor Boettcher A1 - Przemyslaw Bienias A1 - Alexey V. Gorshkov AB -

We consider a quantum sensor network of qubit sensors coupled to a field f(x⃗ ;θ⃗ ) analytically parameterized by the vector of parameters θ⃗ . The qubit sensors are fixed at positions x⃗ 1,…,x⃗ d. While the functional form of f(x⃗ ;θ⃗ ) is known, the parameters θ⃗  are not. We derive saturable bounds on the precision of measuring an arbitrary analytic function q(θ⃗ ) of these parameters and construct the optimal protocols that achieve these bounds. Our results are obtained from a combination of techniques from quantum information theory and duality theorems for linear programming. They can be applied to many problems, including optimal placement of quantum sensors, field interpolation, and the measurement of functionals of parametrized fields.

UR - https://arxiv.org/abs/2011.01259 ER - TY - JOUR T1 - Optimal Protocols in Quantum Annealing and QAOA Problems Y1 - 2020 A1 - Lucas T. Brady A1 - Christopher L. Baldwin A1 - Aniruddha Bapat A1 - Yaroslav Kharkov A1 - Alexey V. Gorshkov AB -

Quantum Annealing (QA) and the Quantum Approximate Optimization Algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. Through simulations of various transverse field Ising models, we demonstrate that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.

UR - https://arxiv.org/abs/2003.08952 ER - TY - JOUR T1 - Quantum Coupon Collector JF - Proceedings of the 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020), Leibniz International Proceedings in Informatics Y1 - 2020 A1 - Srinivasan Arunachalam A1 - Aleksandrs Belovs A1 - Andrew M. Childs A1 - Robin Kothari A1 - Ansis Rosmanis A1 - Ronald de Wolf AB -

We study how efficiently a k-element set S⊆[n] can be learned from a uniform superposition |S⟩ of its elements. One can think of |S⟩=∑i∈S|i⟩/|S|−−−√ as the quantum version of a uniformly random sample over S, as in the classical analysis of the ``coupon collector problem.'' We show that if k is close to n, then we can learn S using asymptotically fewer quantum samples than random samples. In particular, if there are n−k=O(1) missing elements then O(k) copies of |S⟩ suffice, in contrast to the Θ(klogk) random samples needed by a classical coupon collector. On the other hand, if n−k=Ω(k), then Ω(klogk) quantum samples are~necessary. More generally, we give tight bounds on the number of quantum samples needed for every k and n, and we give efficient quantum learning algorithms. We also give tight bounds in the model where we can additionally reflect through |S⟩. Finally, we relate coupon collection to a known example separating proper and improper PAC learning that turns out to show no separation in the quantum case.

VL - 158 U4 - 10:1-10:17 UR - https://arxiv.org/abs/2002.07688 U5 - 10.4230/LIPIcs.TQC.2020.10 ER - TY - JOUR T1 - Quantum Simulation of Hyperbolic Space with Circuit Quantum Electrodynamics: From Graphs to Geometry JF - Phys. Rev. A Y1 - 2020 A1 - Igor Boettcher A1 - Przemyslaw Bienias A1 - Ron Belyansky A1 - Alicia J. Kollár A1 - Alexey V. Gorshkov AB -

We show how quantum many-body systems on hyperbolic lattices with nearest-neighbor hopping and local interactions can be mapped onto quantum field theories in continuous negatively curved space. The underlying lattices have recently been realized experimentally with superconducting resonators and therefore allow for a table-top quantum simulation of quantum physics in curved background. Our mapping provides a computational tool to determine observables of the discrete system even for large lattices, where exact diagonalization fails. As an application and proof of principle we quantitatively reproduce the ground state energy, spectral gap, and correlation functions of the noninteracting lattice system by means of analytic formulas on the Poincaré disk, and show how conformal symmetry emerges for large lattices. This sets the stage for studying interactions and disorder on hyperbolic graphs in the future. Our analysis also reveals in which sense discrete hyperbolic lattices emulate the continuous geometry of negatively curved space and thus can be used to resolve fundamental open problems at the interface of interacting many-body systems, quantum field theory in curved space, and quantum gravity.

VL - 102 UR - https://arxiv.org/abs/1910.12318 CP - 032208 U5 - https://doi.org/10.1103/PhysRevA.102.032208 ER - TY - JOUR T1 - Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer Y1 - 2020 A1 - C. Huerta Alderete A1 - Shivani Singh A1 - Nhung H. Nguyen A1 - Daiwei Zhu A1 - Radhakrishnan Balu A1 - Christopher Monroe A1 - C. M. Chandrashekar A1 - Norbert M. Linke AB -

The quantum walk formalism is a widely used and highly successful framework for modeling quantum systems, such as simulations of the Dirac equation, different dynamics in both the low and high energy regime, and for developing a wide range of quantum algorithms. Here we present the circuit-based implementation of a discrete-time quantum walk in position space on a five-qubit trapped-ion quantum processor. We encode the space of walker positions in particular multi-qubit states and program the system to operate with different quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable mass parameter. The quantum walk circuits and position state mapping scale favorably to a larger model and physical systems, allowing the implementation of any algorithm based on discrete-time quantum walks algorithm and the dynamics associated with the discretized version of the Dirac equation.

UR - https://arxiv.org/abs/2002.02537 ER - TY - JOUR T1 - Realizing and Probing Baryonic Excitations in Rydberg Atom Arrays Y1 - 2020 A1 - Fangli Liu A1 - Seth Whitsitt A1 - Przemyslaw Bienias A1 - Rex Lundgren A1 - Alexey V. Gorshkov AB -

We propose a realization of mesonic and baryonic quasiparticle excitations in Rydberg atom arrays with programmable interactions. Recent experiments have shown that such systems possess a Z3-ordered crystalline phase whose low-energy quasiparticles are defects in the crystalline order. By engineering a Z3-translational-symmetry breaking field on top of the Rydberg-blockaded Hamiltonian, we show that different types of defects experience confinement, and as a consequence form mesonic or baryonic quasiparticle excitations. We illustrate the formation of these quasiparticles by studying a quantum chiral clock model related to the Rydberg Hamiltonian. We then propose an experimental protocol involving out-of-equilibrium dynamics to directly probe the spectrum of the confined excitations. We show that the confined quasiparticle spectrum can limit quantum information spreading in this system. This proposal is readily applicable to current Rydberg experiments, and the method can be easily generalized to more complex confined excitations (e.g. `tetraquarks', `pentaquarks') in phases with Zq order for q>3. 

UR - https://arxiv.org/abs/2007.07258 ER - TY - JOUR T1 - Resonant enhancement of three-body loss between strongly interacting photons Y1 - 2020 A1 - Marcin Kalinowski A1 - Yidan Wang A1 - Przemyslaw Bienias A1 - Michael Gullans A1 - Dalia P. Ornelas-Huerta A1 - Alexander N. Craddock A1 - Steven L. Rolston A1 - J. V. Porto A1 - Hans Peter Büchler A1 - Alexey V. Gorshkov AB -

Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions. The three-body interactions can be either dispersive or dissipative, with both types possibly giving rise to exotic, strongly-interacting, and topological phases of matter. Despite past theoretical and experimental studies of the regime with dispersive interaction, the dissipative regime is still mostly unexplored. Using a renormalization group technique to solve the three-body Schrödinger equation, we show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons. We demonstrate how these interactions relate to the transmission through a single-mode cavity, which can be used as a probe of the three-body physics in current experiment

UR - https://arxiv.org/abs/2010.09772 ER - TY - JOUR T1 - Security Limitations of Classical-Client Delegated Quantum Computing Y1 - 2020 A1 - Christian Badertscher A1 - Alexandru Cojocaru A1 - Léo Colisson A1 - Elham Kashefi A1 - Dominik Leichtle A1 - Atul Mantri A1 - Petros Wallden AB -

Secure delegated quantum computing allows a computationally weak client to outsource an arbitrary quantum computation to an untrusted quantum server in a privacy-preserving manner. One of the promising candidates to achieve classical delegation of quantum computation is classical-client remote state preparation (RSPCC), where a client remotely prepares a quantum state using a classical channel. However, the privacy loss incurred by employing RSPCC as a sub-module is unclear.
In this work, we investigate this question using the Constructive Cryptography framework by Maurer and Renner (ICS'11). We first identify the goal of RSPCC as the construction of ideal RSP resources from classical channels and then reveal the security limitations of using RSPCC. First, we uncover a fundamental relationship between constructing ideal RSP resources (from classical channels) and the task of cloning quantum states. Any classically constructed ideal RSP resource must leak to the server the full classical description (possibly in an encoded form) of the generated quantum state, even if we target computational security only. As a consequence, we find that the realization of common RSP resources, without weakening their guarantees drastically, is impossible due to the no-cloning theorem. Second, the above result does not rule out that a specific RSPCC protocol can replace the quantum channel at least in some contexts, such as the Universal Blind Quantum Computing (UBQC) protocol of Broadbent et al. (FOCS '09). However, we show that the resulting UBQC protocol cannot maintain its proven composable security as soon as RSPCC is used as a subroutine. Third, we show that replacing the quantum channel of the above UBQC protocol by the RSPCC protocol QFactory of Cojocaru et al. (Asiacrypt '19), preserves the weaker, game-based, security of UBQC.

UR - https://arxiv.org/abs/2007.01668 ER - TY - JOUR T1 - Spin-Mediated Mott Excitons Y1 - 2020 A1 - T. -S. Huang A1 - Christopher L. Baldwin A1 - M. Hafezi A1 - V. Galitski AB -

Motivated by recent experiments on Mott insulators, in both iridates and ultracold atoms, we theoretically study the effects of magnetic order on the Mott-Hubbard excitons. In particular, we focus on spin-mediated doublon-holon pairing in Hubbard materials. We use several complementary theoretical techniques: mean-field theory to describe the spin degrees of freedom, the self-consistent Born approximation to characterize individual charge excitations across the Hubbard gap, and the Bethe-Salpeter equation to identify bound states of doublons and holons. The binding energy of the Hubbard exciton is found to increase with increasing the N{é}el order parameter, while the exciton mass decreases. We observe that these trends rely significantly on the retardation of the effective interaction, and require consideration of multiple effects from changing the magnetic order. Our results are consistent with the key qualitative trends observed in recent experiments on iridates. Moreover, the findings could have direct implications on ultracold atom Mott insulators, where the Hubbard model is the exact description of the system and the microscopic degrees of freedom can be directly accessed. 

UR - https://arxiv.org/abs/2004.10825 ER - TY - JOUR T1 - Studying viral populations with tools from quantum spin chains Y1 - 2020 A1 - Saumya Shivam A1 - Christopher L. Baldwin A1 - John Barton A1 - Mehran Kardar A1 - S. L. Sondhi AB -

We study Eigen's model of quasi-species, characterized by sequences that replicate with a specified fitness and mutate independently at single sites. The evolution of the population vector in time is then closely related to that of quantum spins in imaginary time. We employ multiple perspectives and tools from interacting quantum systems to examine growth and collapse of realistic viral populations, specifically certain HIV proteins. All approaches used, including the simplest perturbation theory, give consistent results.

UR - https://arxiv.org/abs/2003.10668 ER - TY - CONF T1 - Symmetries, graph properties, and quantum speedups T2 - Proceedings of the 61st IEEE Symposium on Foundations of Computer Science (FOCS 2020), pp. 649–660 (2020) Y1 - 2020 A1 - Shalev Ben-David A1 - Andrew M. Childs A1 - Andras Gilyen A1 - William Kretschmer A1 - Supartha Podder A1 - Daochen Wang AB -

Aaronson and Ambainis (2009) and Chailloux (2018) showed that fully symmetric (partial) functions do not admit exponential quantum query speedups. This raises a natural question: how symmetric must a function be before it cannot exhibit a large quantum speedup?
In this work, we prove that hypergraph symmetries in the adjacency matrix model allow at most a polynomial separation between randomized and quantum query complexities. We also show that, remarkably, permutation groups constructed out of these symmetries are essentially the only permutation groups that prevent super-polynomial quantum speedups. We prove this by fully characterizing the primitive permutation groups that allow super-polynomial quantum speedups.
In contrast, in the adjacency list model for bounded-degree graphs (where graph symmetry is manifested differently), we exhibit a property testing problem that shows an exponential quantum speedup. These results resolve open questions posed by Ambainis, Childs, and Liu (2010) and Montanaro and de Wolf (2013).

JA - Proceedings of the 61st IEEE Symposium on Foundations of Computer Science (FOCS 2020), pp. 649–660 (2020) UR - https://arxiv.org/abs/2006.12760 U5 - https://doi.org/10.1109/FOCS46700.2020.00066 ER - TY - JOUR T1 - Symmetry breaking and error correction in open quantum systems JF - Phys. Rev. Lett. Y1 - 2020 A1 - Simon Lieu A1 - Ron Belyansky A1 - Jeremy T. Young A1 - Rex Lundgren A1 - Victor V. Albert A1 - Alexey V. Gorshkov AB -

Symmetry-breaking transitions are a well-understood phenomenon of closed quantum systems in quantum optics, condensed matter, and high energy physics. However, symmetry breaking in open systems is less thoroughly understood, in part due to the richer steady-state and symmetry structure that such systems possess. For the prototypical open system---a Lindbladian---a unitary symmetry can be imposed in a "weak" or a "strong" way. We characterize the possible Zn symmetry breaking transitions for both cases. In the case of Z2, a weak-symmetry-broken phase guarantees at most a classical bit steady-state structure, while a strong-symmetry-broken phase admits a partially-protected steady-state qubit. Viewing photonic cat qubits through the lens of strong-symmetry breaking, we show how to dynamically recover the logical information after any gap-preserving strong-symmetric error; such recovery becomes perfect exponentially quickly in the number of photons. Our study forges a connection between driven-dissipative phase transitions and error correctio

VL - 125 U4 - 240405 UR - https://arxiv.org/abs/2008.02816 U5 - https://doi.org/10.1103/PhysRevLett.125.240405 ER - TY - JOUR T1 - Time-dependent Hamiltonian simulation with L1-norm scaling JF - Quantum Y1 - 2020 A1 - Dominic W. Berry A1 - Andrew M. Childs A1 - Yuan Su A1 - Xin Wang A1 - Nathan Wiebe AB -

The difficulty of simulating quantum dynamics depends on the norm of the Hamiltonian. When the Hamiltonian varies with time, the simulation complexity should only depend on this quantity instantaneously. We develop quantum simulation algorithms that exploit this intuition. For the case of sparse Hamiltonian simulation, the gate complexity scales with the L1 norm ∫t0dτ∥H(τ)∥max, whereas the best previous results scale with tmaxτ∈[0,t]∥H(τ)∥max. We also show analogous results for Hamiltonians that are linear combinations of unitaries. Our approaches thus provide an improvement over previous simulation algorithms that can be substantial when the Hamiltonian varies significantly. We introduce two new techniques: a classical sampler of time-dependent Hamiltonians and a rescaling principle for the Schrödinger equation. The rescaled Dyson-series algorithm is nearly optimal with respect to all parameters of interest, whereas the sampling-based approach is easier to realize for near-term simulation. By leveraging the L1-norm information, we obtain polynomial speedups for semi-classical simulations of scattering processes in quantum chemistry.

VL - 4 UR - https://arxiv.org/abs/1906.07115 CP - 254 U5 - https://doi.org/10.22331/q-2020-04-20-254 ER - TY - JOUR T1 - Transport and dynamics in the frustrated two-bath spin-boson model Y1 - 2020 A1 - Ron Belyansky A1 - Seth Whitsitt A1 - Rex Lundgren A1 - Yidan Wang A1 - Andrei Vrajitoarea A1 - Andrew A. Houck A1 - Alexey V. Gorshkov AB -

We study the strong coupling dynamics as well as transport properties of photons in the two-bath spin-boson model, in which a spin-1/2 particle is frustratingly coupled to two independent Ohmic bosonic baths. Using a combination of numerical and analytical methods, we show that the frustration in this model gives rise to rich physics in a very wide range of energies. This is in contrast to the one-bath spin-boson model, where the non-trivial physics occurs at an energy scale close to the renormalized spin frequency. The renormalized spin frequency in the two-bath spin-boson model is still important, featuring in different observables, including the non-equiblirum dynamics of both the spin and the baths along with the elastic transport properties of a photon. The latter however reveals a much more complex structure. The elastic scattering displays non-monotonic behavior at high frequencies, and is very different in the two channels: intra- and inter-bath scattering. The photon can also be inelastically scattered, a process in which it is split into several photons of smaller energies. We show that such inelastic processes are highly anisotropic, with the outgoing particles being preferentially emitted into only one of the baths. Moreover, the inelastic scattering rate is parameterically larger than in the one-bath case, and can even exceed the total elastic rate. Our results can be verified with state-of-the-art circuit and cavity quantum electrodynamics experiments. 

UR - https://arxiv.org/abs/2007.03690 ER - TY - JOUR T1 - Understanding the Frauchiger-Renner Argument Y1 - 2020 A1 - Jeffrey Bub AB -

In 2018, Daniela Frauchiger and Renato Renner published an article in Nature Communications entitled `Quantum theory cannot consistently describe the use of itself.' I clarify the significance of the result and point out a common and persistent misunderstanding of the argument, which has been attacked as flawed from a variety of interpretational perspectives.

UR - https://arxiv.org/abs/2008.08538 ER - TY - JOUR T1 - Universal one-dimensional discrete-time quantum walks and their implementation on near term quantum hardware Y1 - 2020 A1 - Shivani Singh A1 - Cinthia H. Alderete A1 - Radhakrishnan Balu A1 - Christopher Monroe A1 - Norbert M. Linke A1 - C. M. Chandrashekar AB -

Quantum walks are a promising framework for developing quantum algorithms and quantum simulations. Quantum walks represent an important test case for the application of quantum computers. Here we present different forms of discrete-time quantum walks and show their equivalence for physical realizations. Using an appropriate digital mapping of the position space on which a walker evolves onto the multi-qubit states in a quantum processor, we present different configurations of quantum circuits for the implementation of discrete-time quantum walks in one-dimensional position space. With example circuits for a five qubit machine we address scalability to higher dimensions and larger quantum processors.

UR - https://arxiv.org/abs/2001.11197 ER - TY - JOUR T1 - Accelerated Variational Quantum Eigensolver JF - Phys. Rev. Lett. Y1 - 2019 A1 - Daochen Wang A1 - Oscar Higgott A1 - Stephen Brierley AB -

The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision ε, QPE requires O(1) repetitions of circuits with depth O(1/ε), whereas each expectation estimation subroutine within VQE requires O(1/ε2) samples from circuits with depth O(1). We propose a generalised VQE algorithm that interpolates between these two regimes via a free parameter α∈[0,1] which can exploit quantum coherence over a circuit depth of O(1/εα) to reduce the number of samples to O(1/ε2(1−α)). Along the way, we give a new routine for expectation estimation under limited quantum resources that is of independent interest.

VL - 122 UR - https://arxiv.org/abs/1802.00171 CP - 140504 U5 - https://doi.org/10.1103/PhysRevLett.122.140504 ER - TY - JOUR T1 - Bang-bang control as a design principle for classical and quantum optimization algorithms JF - Quantum Information & Computation Y1 - 2019 A1 - Aniruddha Bapat A1 - Stephen Jordan AB -

Physically motivated classical heuristic optimization algorithms such as simulated annealing (SA) treat the objective function as an energy landscape, and allow walkers to escape local minima. It has been argued that quantum properties such as tunneling may give quantum algorithms advantage in finding ground states of vast, rugged cost landscapes. Indeed, the Quantum Adiabatic Algorithm (QAO) and the recent Quantum Approximate Optimization Algorithm (QAOA) have shown promising results on various problem instances that are considered classically hard. Here, we argue that the type of control strategy used by the optimization algorithm may be crucial to its success. Along with SA, QAO and QAOA, we define a new, bang-bang version of simulated annealing, BBSA, and study the performance of these algorithms on two well-studied problem instances from the literature. Both classically and quantumly, the successful control strategy is found to be bang-bang, exponentially outperforming the quasistatic analogues on the same instances. Lastly, we construct O(1)-depth QAOA protocols for a class of symmetric cost functions, and provide an accompanying physical picture.

VL - 19 U4 - 424-446 UR - https://arxiv.org/abs/1812.02746 CP - 5&6 ER - TY - JOUR T1 - Classifying single-qubit noise using machine learning Y1 - 2019 A1 - Travis L. Scholten A1 - Yi-Kai Liu A1 - Kevin Young A1 - Robin Blume-Kohout AB -

Quantum characterization, validation, and verification (QCVV) techniques are used to probe, characterize, diagnose, and detect errors in quantum information processors (QIPs). An important component of any QCVV protocol is a mapping from experimental data to an estimate of a property of a QIP. Machine learning (ML) algorithms can help automate the development of QCVV protocols, creating such maps by learning them from training data. We identify the critical components of "machine-learned" QCVV techniques, and present a rubric for developing them. To demonstrate this approach, we focus on the problem of determining whether noise affecting a single qubit is coherent or stochastic (incoherent) using the data sets originally proposed for gate set tomography. We leverage known ML algorithms to train a classifier distinguishing these two kinds of noise. The accuracy of the classifier depends on how well it can approximate the "natural" geometry of the training data. We find GST data sets generated by a noisy qubit can reliably be separated by linear surfaces, although feature engineering can be necessary. We also show the classifier learned by a support vector machine (SVM) is robust under finite-sample noise. 

UR - https://arxiv.org/abs/1908.11762 ER - TY - JOUR T1 - Competing (Semi)-Selfish Miners in Bitcoin Y1 - 2019 A1 - Francisco J. Marmolejo-Cossío A1 - Eric Brigham A1 - Benjamin Sela A1 - Jonathan Katz AB -

The Bitcoin protocol prescribes certain behavior by the miners who are responsible for maintaining and extending the underlying blockchain; in particular, miners who successfully solve a puzzle, and hence can extend the chain by a block, are supposed to release that block immediately. Eyal and Sirer showed, however, that a selfish miner is incentivized to deviate from the protocol and withhold its blocks under certain conditions. The analysis by Eyal and Sirer, as well as in followup work, considers a \emph{single} deviating miner (who may control a large fraction of the hashing power in the network) interacting with a remaining pool of honest miners. Here, we extend this analysis to the case where there are \emph{multiple} (non-colluding) selfish miners. We find that with multiple strategic miners, specific deviations from honest mining by multiple strategic agents can outperform honest mining, even if individually miners would not be incentivised to be dishonest. This previous point effectively renders the Bitcoin protocol to be less secure than previously thought. 

UR - https://arxiv.org/abs/1906.04502 ER - TY - JOUR T1 - Development of Quantum InterConnects for Next-Generation Information Technologies Y1 - 2019 A1 - David Awschalom A1 - Karl K. Berggren A1 - Hannes Bernien A1 - Sunil Bhave A1 - Lincoln D. Carr A1 - Paul Davids A1 - Sophia E. Economou A1 - Dirk Englund A1 - Andrei Faraon A1 - Marty Fejer A1 - Saikat Guha A1 - Martin V. Gustafsson A1 - Evelyn Hu A1 - Liang Jiang A1 - Jungsang Kim A1 - Boris Korzh A1 - Prem Kumar A1 - Paul G. Kwiat A1 - Marko Lončar A1 - Mikhail D. Lukin A1 - David A. B. Miller A1 - Christopher Monroe A1 - Sae Woo Nam A1 - Prineha Narang A1 - Jason S. Orcutt AB -

Just as classical information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the interconnect, a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in optical fiber, or microwave fields. While interconnects have been well engineered for decades in the realm of classical information technology, quantum interconnects (QuICs) present special challenges, as they must allow the transfer of fragile quantum states between different physical parts or degrees of freedom of the system. The diversity of QIT platforms (superconducting, atomic, solid-state color center, optical, etc.) that will form a quantum internet poses additional challenges. As quantum systems scale to larger size, the quantum interconnect bottleneck is imminent, and is emerging as a grand challenge for QIT. For these reasons, it is the position of the community represented by participants of the NSF workshop on Quantum Interconnects that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program. Given the diversity of QIT platforms, materials used, applications, and infrastructure required, a convergent research program including partnership between academia, industry and national laboratories is required. This document is a summary from a U.S. National Science Foundation supported workshop held on 31 October - 1 November 2019 in Alexandria, VA. Attendees were charged to identify the scientific and community needs, opportunities, and significant challenges for quantum interconnects over the next 2-5 years. 

UR - https://arxiv.org/abs/1912.06642 ER - TY - JOUR T1 - Equilibration to the non-Abelian thermal state in quantum many-body physics Y1 - 2019 A1 - Nicole Yunger Halpern A1 - Michael E. Beverland A1 - Amir Kalev AB -

In statistical mechanics, a small system exchanges conserved charges---heat, particles, electric charge, etc.---with a bath. The small system thermalizes to the canonical ensemble, or the grand canonical ensemble, etc., depending on the charges. The charges are usually represented by operators assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small system's long-time state was dubbed "the non-Abelian thermal state (NATS)." We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which form the system of interest. The conserved charges manifest as spin components. Heisenberg interactions push the charges between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting charges from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter. 

UR - https://arxiv.org/abs/1906.09227 ER - TY - JOUR T1 - Floquet engineering of optical lattices with spatial features and periodicity below the diffraction limit Y1 - 2019 A1 - S. Subhankar A1 - P. Bienias A1 - P. Titum A1 - T-C. Tsui A1 - Y. Wang A1 - Alexey V. Gorshkov A1 - S. L. Rolston A1 - J. V. Porto AB -

Floquet engineering or coherent time periodic driving of quantum systems has been successfully used to synthesize Hamiltonians with novel properties. In ultracold atomic systems, this has led to experimental realizations of artificial gauge fields, topological band structures, and observation of dynamical localization, to name just a few. Here we present a Floquet-based framework to stroboscopically engineer Hamiltonians with spatial features and periodicity below the diffraction limit of light used to create them by time-averaging over various configurations of a 1D optical Kronig-Penney (KP) lattice. The KP potential is a lattice of narrow subwavelength barriers spaced by half the optical wavelength (λ/2) and arises from the non-linear optical response of the atomic dark state. Stroboscopic control over the strength and position of this lattice requires time-dependent adiabatic manipulation of the dark state spin composition. We investigate adiabaticity requirements and shape our time-dependent light fields to respect the requirements. We apply this framework to show that a λ/4-spaced lattice can be synthesized using realistic experimental parameters as an example, discuss mechanisms that limit lifetimes in these lattices, explore candidate systems and their limitations, and treat adiabatic loading into the ground band of these lattices.

UR - https://arxiv.org/abs/1906.07646 ER - TY - JOUR T1 - Graphical Methods in Device-Independent Quantum Cryptography JF - Quantum Y1 - 2019 A1 - Spencer Breiner A1 - Carl Miller A1 - Neil J. Ross AB -

We introduce a framework for graphical security proofs in device-independent quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more accessible, facilitate the discovery of new proofs, and enable automated proof verification. As an example of our framework, we reprove a recent result from device-independent quantum cryptography: any linear randomness expansion protocol can be converted into an unbounded randomness expansion protocol. We give a graphical exposition of a proof of this result and implement parts of it in the Globular proof assistant.

VL - 3 UR - https://arxiv.org/abs/1705.09213 CP - 146 U5 - https://doi.org/10.22331/q-2019-05-27-146 ER - TY - JOUR T1 - Ground-state energy estimation of the water molecule on a trapped ion quantum computer Y1 - 2019 A1 - Yunseong Nam A1 - Jwo-Sy Chen A1 - Neal C. Pisenti A1 - Kenneth Wright A1 - Conor Delaney A1 - Dmitri Maslov A1 - Kenneth R. Brown A1 - Stewart Allen A1 - Jason M. Amini A1 - Joel Apisdorf A1 - Kristin M. Beck A1 - Aleksey Blinov A1 - Vandiver Chaplin A1 - Mika Chmielewski A1 - Coleman Collins A1 - Shantanu Debnath A1 - Andrew M. Ducore A1 - Kai M. Hudek A1 - Matthew Keesan A1 - Sarah M. Kreikemeier A1 - Jonathan Mizrahi A1 - Phil Solomon A1 - Mike Williams A1 - Jaime David Wong-Campos A1 - Christopher Monroe A1 - Jungsang Kim AB -

Quantum computing leverages the quantum resources of superposition and entanglement to efficiently solve computational problems considered intractable for classical computers. Examples include calculating molecular and nuclear structure, simulating strongly-interacting electron systems, and modeling aspects of material function. While substantial theoretical advances have been made in mapping these problems to quantum algorithms, there remains a large gap between the resource requirements for solving such problems and the capabilities of currently available quantum hardware. Bridging this gap will require a co-design approach, where the expression of algorithms is developed in conjunction with the hardware itself to optimize execution. Here, we describe a scalable co-design framework for solving chemistry problems on a trapped ion quantum computer, and apply it to compute the ground-state energy of the water molecule. The robust operation of the trapped ion quantum computer yields energy estimates with errors approaching the chemical accuracy, which is the target threshold necessary for predicting the rates of chemical reaction dynamics.

UR - https://arxiv.org/abs/1902.10171 ER - TY - JOUR T1 - Nondestructive cooling of an atomic quantum register via state-insensitive Rydberg interactions Y1 - 2019 A1 - Ron Belyansky A1 - Jeremy T. Young A1 - Przemyslaw Bienias A1 - Zachary Eldredge A1 - Adam M. Kaufman A1 - Peter Zoller A1 - Alexey V. Gorshkov AB -

We propose a protocol for sympathetically cooling neutral atoms without destroying the quantum information stored in their internal states. This is achieved by designing state-insensitive Rydberg interactions between the data-carrying atoms and cold auxiliary atoms. The resulting interactions give rise to an effective phonon coupling, which leads to the transfer of heat from the data atoms to the auxiliary atoms, where the latter can be cooled by conventional methods. This can be used to extend the lifetime of quantum storage based on neutral atoms and can have applications for long quantum computations. The protocol can also be modified to realize state-insensitive interactions between the data and the auxiliary atoms but tunable and non-trivial interactions among the data atoms, allowing one to simultaneously cool and simulate a quantum spin-model. 

UR - https://arxiv.org/abs/1907.11156 ER - TY - JOUR T1 - Observation of Domain Wall Confinement and Dynamics in a Quantum Simulator Y1 - 2019 A1 - W. L. Tan A1 - P. Becker A1 - F. Liu A1 - G. Pagano A1 - K. S. Collins A1 - A. De A1 - L. Feng A1 - H. B. Kaplan A1 - A. Kyprianidis A1 - R. Lundgren A1 - W. Morong A1 - S. Whitsitt A1 - Alexey V. Gorshkov A1 - C. Monroe AB -

Confinement is a ubiquitous mechanism in nature, whereby particles feel an attractive force that increases without bound as they separate. A prominent example is color confinement in particle physics, in which baryons and mesons are produced by quark confinement. Analogously, confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here, we report the first observation of magnetic domain wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can dramatically suppress information propagation and thermalization in such many-body systems. We are able to quantitatively determine the excitation energy of domain wall bound states from non-equilibrium quench dynamics. Furthermore, we study the number of domain wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating exotic high-energy physics phenomena, such as quark collision and string breaking

UR - https://arxiv.org/abs/1912.11117 ER - TY - JOUR T1 - Opportunities for Nuclear Physics & Quantum Information Science Y1 - 2019 A1 - I. C. Cloët A1 - Matthew R. Dietrich A1 - John Arrington A1 - Alexei Bazavov A1 - Michael Bishof A1 - Adam Freese A1 - Alexey V. Gorshkov A1 - Anna Grassellino A1 - Kawtar Hafidi A1 - Zubin Jacob A1 - Michael McGuigan A1 - Yannick Meurice A1 - Zein-Eddine Meziani A1 - Peter Mueller A1 - Christine Muschik A1 - James Osborn A1 - Matthew Otten A1 - Peter Petreczky A1 - Tomas Polakovic A1 - Alan Poon A1 - Raphael Pooser A1 - Alessandro Roggero A1 - Mark Saffman A1 - Brent VanDevender A1 - Jiehang Zhang A1 - Erez Zohar AB -

his whitepaper is an outcome of the workshop Intersections between Nuclear Physics and Quantum Information held at Argonne National Laboratory on 28-30 March 2018 [www.phy.anl.gov/npqi2018/]. The workshop brought together 116 national and international experts in nuclear physics and quantum information science to explore opportunities for the two fields to collaborate on topics of interest to the U.S. Department of Energy (DOE) Office of Science, Office of Nuclear Physics, and more broadly to U.S. society and industry. The workshop consisted of 22 invited and 10 contributed talks, as well as three panel discussion sessions. Topics discussed included quantum computation, quantum simulation, quantum sensing, nuclear physics detectors, nuclear many-body problem, entanglement at collider energies, and lattice gauge theories.

UR - https://arxiv.org/abs/1903.05453 ER - TY - JOUR T1 - Parallel Self-Testing of the GHZ State with a Proof by Diagrams JF - EPTCS Y1 - 2019 A1 - Spencer Breiner A1 - Amir Kalev A1 - Carl Miller AB -

Quantum self-testing addresses the following question: is it possible to verify the existence of a multipartite state even when one's measurement devices are completely untrusted? This problem has seen abundant activity in the last few years, particularly with the advent of parallel self-testing (i.e., testing several copies of a state at once), which has applications not only to quantum cryptography but also quantum computing. In this work we give the first error-tolerant parallel self-test in a three-party (rather than two-party) scenario, by showing that an arbitrary number of copies of the GHZ state can be self-tested. In order to handle the additional complexity of a three-party setting, we use a diagrammatic proof based on categorical quantum mechanics, rather than a typical symbolic proof. The diagrammatic approach allows for manipulations of the complicated tensor networks that arise in the proof, and gives a demonstration of the importance of picture-languages in quantum information.

VL - 287 U4 - 43-66 UR - https://arxiv.org/abs/1806.04744 U5 - https://doi.org/10.4204/EPTCS.287.3 ER - TY - JOUR T1 - Polynomial Time Algorithms for Estimating Spectra of Adiabatic Hamiltonians JF - Phys. Rev. A Y1 - 2019 A1 - Jacob Bringewatt A1 - William Dorland A1 - Stephen P. Jordan AB -

Much research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians with Hamming symmetric potentials, such as the well studied "spike" example. Due to the large amount of symmetry in these potentials such problems are readily open to analysis both analytically and computationally. However, more realistic potentials do not have such a high degree of symmetry and may have many local minima. Here we present a somewhat more realistic class of problems consisting of many individually Hamming symmetric potential wells. For two or three such wells we demonstrate that such a problem can be solved exactly in time polynomial in the number of qubits and wells. For greater than three wells, we present a tight binding approach with which to efficiently analyze the performance of such Hamiltonians in an adiabatic computation. We provide several basic examples designed to highlight the usefulness of this toy model and to give insight into using the tight binding approach to examining it, including: (1) adiabatic unstructured search with a transverse field driver and a prior guess to the marked item and (2) a scheme for adiabatically simulating the ground states of small collections of strongly interacting spins, with an explicit demonstration for an Ising model Hamiltonian.

VL - 100 UR - https://arxiv.org/abs/1905.07461 CP - 032336 U5 - https://doi.org/10.1103/PhysRevA.100.032336 ER - TY - JOUR T1 - Quantum Approximate Optimization with a Trapped-Ion Quantum Simulator Y1 - 2019 A1 - G. Pagano A1 - A. Bapat A1 - P. Becker A1 - K. S. Collins A1 - A. De A1 - P. W. Hess A1 - H. B. Kaplan A1 - A. Kyprianidis A1 - W. L. Tan A1 - Christopher L. Baldwin A1 - L. T. Brady A1 - A. Deshpande A1 - F. Liu A1 - S. Jordan A1 - Alexey V. Gorshkov A1 - C. Monroe AB -

Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly solving exponentially hard problems, such as optimization and satisfiability. Here we report the first implementation of a shallow-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator to estimate the ground state energy of the transverse field Ising model with tunable long-range interactions. First, we exhaustively search the variational control parameters to approximate the ground state energy with up to 40 trapped-ion qubits. We then interface the quantum simulator with a classical algorithm to more efficiently find the optimal set of parameters that minimizes the resulting energy of the system. We finally sample from the full probability distribution of the QAOA output with single-shot and efficient measurements of every qubit. 

UR - https://arxiv.org/abs/1906.02700 ER - TY - JOUR T1 - Quantum Computer Systems for Scientific Discovery Y1 - 2019 A1 - Yuri Alexeev A1 - Dave Bacon A1 - Kenneth R. Brown A1 - Robert Calderbank A1 - Lincoln D. Carr A1 - Frederic T. Chong A1 - Brian DeMarco A1 - Dirk Englund A1 - Edward Farhi A1 - Bill Fefferman A1 - Alexey V. Gorshkov A1 - Andrew Houck A1 - Jungsang Kim A1 - Shelby Kimmel A1 - Michael Lange A1 - Seth Lloyd A1 - Mikhail D. Lukin A1 - Dmitri Maslov A1 - Peter Maunz A1 - Christopher Monroe A1 - John Preskill A1 - Martin Roetteler A1 - Martin Savage A1 - Jeff Thompson A1 - Umesh Vazirani AB -

The great promise of quantum computers comes with the dual challenges of building them and finding their useful applications. We argue that these two challenges should be considered together, by co-designing full stack quantum computer systems along with their applications in order to hasten their development and potential for scientific discovery. In this context, we identify scientific and community needs, opportunities, and significant challenges for the development of quantum computers for science over the next 2-10 years. This document is written by a community of university, national laboratory, and industrial researchers in the field of Quantum Information Science and Technology, and is based on a summary from a U.S. National Science Foundation workshop on Quantum Computing held on October 21-22, 2019 in Alexandria, VA.

UR - https://arxiv.org/abs/1912.07577 ER - TY - JOUR T1 - Quantum Computing at the Frontiers of Biological Sciences Y1 - 2019 A1 - Prashant S. Emani A1 - Jonathan Warrell A1 - Alan Anticevic A1 - Stefan Bekiranov A1 - Michael Gandal A1 - Michael J. McConnell A1 - Guillermo Sapiro A1 - Alán Aspuru-Guzik A1 - Justin Baker A1 - Matteo Bastiani A1 - Patrick McClure A1 - John Murray A1 - Stamatios N Sotiropoulos A1 - J. M. Taylor A1 - Geetha Senthil A1 - Thomas Lehner A1 - Mark B. Gerstein A1 - Aram W. Harrow AB -

The search for meaningful structure in biological data has relied on cutting-edge advances in computational technology and data science methods. However, challenges arise as we push the limits of scale and complexity in biological problems. Innovation in massively parallel, classical computing hardware and algorithms continues to address many of these challenges, but there is a need to simultaneously consider new paradigms to circumvent current barriers to processing speed. Accordingly, we articulate a view towards quantum computation and quantum information science, where algorithms have demonstrated potential polynomial and exponential computational speedups in certain applications, such as machine learning. The maturation of the field of quantum computing, in hardware and algorithm development, also coincides with the growth of several collaborative efforts to address questions across length and time scales, and scientific disciplines. We use this coincidence to explore the potential for quantum computing to aid in one such endeavor: the merging of insights from genetics, genomics, neuroimaging and behavioral phenotyping. By examining joint opportunities for computational innovation across fields, we highlight the need for a common language between biological data analysis and quantum computing. Ultimately, we consider current and future prospects for the employment of quantum computing algorithms in the biological sciences. 

UR - https://arxiv.org/abs/1911.07127 ER - TY - JOUR T1 - Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes Y1 - 2019 A1 - Adam R. Brown A1 - Hrant Gharibyan A1 - Stefan Leichenauer A1 - Henry W. Lin A1 - Sepehr Nezami A1 - Grant Salton A1 - Leonard Susskind A1 - Brian Swingle A1 - Michael Walter AB -

With the long-term goal of studying quantum gravity in the lab, we propose holographic teleportation protocols that can be readily executed in table-top experiments. These protocols exhibit similar behavior to that seen in recent traversable wormhole constructions: information that is scrambled into one half of an entangled system will, following a weak coupling between the two halves, unscramble into the other half. We introduce the concept of "teleportation by size" to capture how the physics of operator-size growth naturally leads to information transmission. The transmission of a signal through a semi-classical holographic wormhole corresponds to a rather special property of the operator-size distribution we call "size winding". For more general setups (which may not have a clean emergent geometry), we argue that imperfect size winding is a generalization of the traversable wormhole phenomenon. For example, a form of signalling continues to function at high temperature and at large times for generic chaotic systems, even though it does not correspond to a signal going through a geometrical wormhole, but rather to an interference effect involving macroscopically different emergent geometries. Finally, we outline implementations feasible with current technology in two experimental platforms: Rydberg atom arrays and trapped ions. 

UR - https://arxiv.org/abs/1911.06314 ER - TY - JOUR T1 - Quantum Simulators: Architectures and Opportunities Y1 - 2019 A1 - Ehud Altman A1 - Kenneth R. Brown A1 - Giuseppe Carleo A1 - Lincoln D. Carr A1 - Eugene Demler A1 - Cheng Chin A1 - Brian DeMarco A1 - Sophia E. Economou A1 - Mark A. Eriksson A1 - Kai-Mei C. Fu A1 - Markus Greiner A1 - Kaden R. A. Hazzard A1 - Randall G. Hulet A1 - Alicia J. Kollár A1 - Benjamin L. Lev A1 - Mikhail D. Lukin A1 - Ruichao Ma A1 - Xiao Mi A1 - Shashank Misra A1 - Christopher Monroe A1 - Kater Murch A1 - Zaira Nazario A1 - Kang-Kuen Ni A1 - Andrew C. Potter A1 - Pedram Roushan AB -

Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behaviors to explore and solve hard scientific, engineering, and computational problems. Rapid development over the last two decades has produced more than 300 quantum simulators in operation worldwide using a wide variety of experimental platforms. Recent advances in several physical architectures promise a golden age of quantum simulators ranging from highly optimized special purpose simulators to flexible programmable devices. These developments have enabled a convergence of ideas drawn from fundamental physics, computer science, and device engineering. They have strong potential to address problems of societal importance, ranging from understanding vital chemical processes, to enabling the design of new materials with enhanced performance, to solving complex computational problems. It is the position of the community, as represented by participants of the NSF workshop on "Programmable Quantum Simulators," that investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines. Such a program should address two areas of emphasis: (1) support for creating quantum simulator prototypes usable by the broader scientific community, complementary to the present universal quantum computer effort in industry; and (2) support for fundamental research carried out by a blend of multi-investigator, multi-disciplinary collaborations with resources for quantum simulator software, hardware, and education. 

UR - https://arxiv.org/abs/1912.06938 ER - TY - JOUR T1 - Quenched vs Annealed: Glassiness from SK to SYK Y1 - 2019 A1 - Christopher L. Baldwin A1 - Brian Swingle AB -

We show that any SYK-like model with finite-body interactions among \textit{local} degrees of freedom, e.g., bosons or spins, has a fundamental difference from the standard fermionic model: the former fails to be described by an annealed free energy at low temperature. In this respect, such models more closely resemble spin glasses. We demonstrate this by two means: first, a general theorem proving that the annealed free energy is divergent at low temperature in any model with a tensor product Hilbert space; and second, a replica treatment of two prominent examples which exhibit phase transitions from an "annealed" phase to a "non-annealed" phase as a function of temperature. We further show that this effect appears only at O(N)'th order in a 1/N expansion, even though lower-order terms misleadingly seem to converge. Our results prove that the non-bosonic nature of the particles in SYK is an essential ingredient for its physics, highlight connections between local models and spin glasses, and raise important questions as to the role of fermions and/or glassiness in holography.

UR - https://arxiv.org/abs/1911.11865 ER - TY - JOUR T1 - Resource theory of entanglement for bipartite quantum channels Y1 - 2019 A1 - Stefan Bäuml A1 - Siddhartha Das A1 - Xin Wang A1 - Mark M. Wilde AB -

The traditional perspective in quantum resource theories concerns how to use free operations to convert one resourceful quantum state to another one. For example, a fundamental and well known question in entanglement theory is to determine the distillable entanglement of a bipartite state, which is equal to the maximum rate at which fresh Bell states can be distilled from many copies of a given bipartite state by employing local operations and classical communication for free. It is the aim of this paper to take this kind of question to the next level, with the main question being: What is the best way of using free channels to convert one resourceful quantum channel to another? Here we focus on the the resource theory of entanglement for bipartite channels and establish several fundamental tasks and results regarding it. In particular, we establish bounds on several pertinent information processing tasks in channel entanglement theory, and we define several entanglement measures for bipartite channels, including the logarithmic negativity and the κ-entanglement. We also show that the max-Rains information of [Bäuml et al., Physical Review Letters, 121, 250504 (2018)] has a divergence interpretation, which is helpful for simplifying the results of this earlier work. 

UR - https://arxiv.org/abs/1907.04181 ER - TY - JOUR T1 - Scale-Invariant Continuous Entanglement Renormalization of a Chern Insulator JF - Phys. Rev. Lett Y1 - 2019 A1 - Su-Kuan Chu A1 - Guanyu Zhu A1 - James R. Garrison A1 - Zachary Eldredge A1 - Ana Valdés Curiel A1 - Przemyslaw Bienias A1 - I. B. Spielman A1 - Alexey V. Gorshkov AB -

The multi-scale entanglement renormalization ansatz (MERA) postulates the existence of quantum circuits that renormalize entanglement in real space at different length scales. Chern insulators, however, cannot have scale-invariant discrete MERA circuits with finite bond dimension. In this Letter, we show that the continuous MERA (cMERA), a modified version of MERA adapted for field theories, possesses a fixed point wavefunction with nonzero Chern number. Additionally, it is well known that reversed MERA circuits can be used to prepare quantum states efficiently in time that scales logarithmically with the size of the system. However, state preparation via MERA typically requires the advent of a full-fledged universal quantum computer. In this Letter, we demonstrate that our cMERA circuit can potentially be realized in existing analog quantum computers, i.e., an ultracold atomic Fermi gas in an optical lattice with light-induced spin-orbit coupling. 

VL - 122 UR - https://arxiv.org/abs/1807.11486 CP - 120502 U5 - https://doi.org/10.1103/PhysRevLett.122.120502 ER - TY - JOUR T1 - Towards Bulk Metric Reconstruction from Extremal Area Variations Y1 - 2019 A1 - Ning Bao A1 - ChunJun Cao A1 - Sebastian Fischetti A1 - Cynthia Keeler AB -

The Ryu-Takayanagi and Hubeny-Rangamani-Takayanagi formulae suggest that bulk geometry emerges from the entanglement structure of the boundary theory. Using these formulae, we build on a result of Alexakis, Balehowsky, and Nachman to show that in four bulk dimensions, the entanglement entropies of boundary regions of disk topology uniquely fix the bulk metric in any region foliated by the corresponding HRT surfaces. More generally, for a bulk of any dimension , knowledge of the (variations of the) areas of two-dimensional boundary-anchored extremal surfaces of disk topology uniquely fixes the bulk metric wherever these surfaces reach. This result is covariant and not reliant on any symmetry assumptions; its applicability thus includes regions of strong dynamical gravity such as the early-time interior of black holes formed from collapse. While we only show uniqueness of the metric, the approach we present provides a clear path towards an\textit {explicit} spacetime metric reconstruction.

UR - https://arxiv.org/abs/1904.04834 ER - TY - JOUR T1 - ‘Two Dogmas’ Redux Y1 - 2019 A1 - Jeffrey Bub AB -

I revisit the paper ‘Two dogmas about quantum mechanics,’ co-authored with Itamar Pitowsky, in which we outlined an information-theoretic interpretation of quantum mechanics as an alternative to the Everett interpretation. Following the analysis by Frauchiger and Renner of ‘encapsulated’ measurements (where a super-observer, with unrestricted ability to measure any arbitrary observable of a complex quantum system, measures the memory of an observer system after that system measures the spin of a qubit), I show that the Everett interpretation leads to modal contradictions. In this sense, the Everett interpretation is inconsistent.

PB - Springer, Cham UR - https://arxiv.org/abs/1907.06240 ER - TY - JOUR T1 - Two-qubit entangling gates within arbitrarily long chains of trapped ions Y1 - 2019 A1 - Kevin A. Landsman A1 - Yukai Wu A1 - Pak Hong Leung A1 - Daiwei Zhu A1 - Norbert M. Linke A1 - Kenneth R. Brown A1 - Luming Duan A1 - Christopher R. Monroe AB -

Ion trap systems are a leading platform for large scale quantum computers. Trapped ion qubit crystals are fully-connected and reconfigurable, owing to their long range Coulomb interaction that can be modulated with external optical forces. However, the spectral crowding of collective motional modes could pose a challenge to the control of such interactions for large numbers of qubits. Here, we show that high-fidelity quantum gate operations are still possible with very large trapped ion crystals, simplifying the scaling of ion trap quantum computers. To this end, we present analytical work that determines how parallel entangling gates produce a crosstalk error that falls off as the inverse cube of the distance between the pairs. We also show experimental work demonstrating entangling gates on a fully-connected chain of seventeen 171Yb+ ions with fidelities as high as 97(1)%.

UR - https://arxiv.org/abs/1905.10421 ER - TY - JOUR T1 - Variational Quantum Computation of Excited States JF - Quantum Y1 - 2019 A1 - Oscar Higgott A1 - Daochen Wang A1 - Stephen Brierley AB -

The calculation of excited state energies of electronic structure Hamiltonians has many important applications, such as the calculation of optical spectra and reaction rates. While low-depth quantum algorithms, such as the variational quantum eigenvalue solver (VQE), have been used to determine ground state energies, methods for calculating excited states currently involve the implementation of high-depth controlled-unitaries or a large number of additional samples. Here we show how overlap estimation can be used to deflate eigenstates once they are found, enabling the calculation of excited state energies and their degeneracies. We propose an implementation that requires the same number of qubits as VQE and at most twice the circuit depth. Our method is robust to control errors, is compatible with error-mitigation strategies and can be implemented on near-term quantum compute

VL - 3 UR - https://arxiv.org/abs/1805.08138 CP - 156 U5 - https://doi.org/10.22331/q-2019-07-01-156 ER - TY - JOUR T1 - Classical lower bounds from quantum upper bounds Y1 - 2018 A1 - Shalev Ben-David A1 - Adam Bouland A1 - Ankit Garg A1 - Robin Kothari AB -

We prove lower bounds on complexity measures, such as the approximate degree of a Boolean function and the approximate rank of a Boolean matrix, using quantum arguments. We prove these lower bounds using a quantum query algorithm for the combinatorial group testing problem. 
We show that for any function f, the approximate degree of computing the OR of n copies of f is Omega(sqrt{n}) times the approximate degree of f, which is optimal. No such general result was known prior to our work, and even the lower bound for the OR of ANDs function was only resolved in 2013. 
We then prove an analogous result in communication complexity, showing that the logarithm of the approximate rank (or more precisely, the approximate gamma_2 norm) of F: X x Y -> {0,1} grows by a factor of Omega~(sqrt{n}) when we take the OR of n copies of F, which is also essentially optimal. As a corollary, we give a new proof of Razborov's celebrated Omega(sqrt{n}) lower bound on the quantum communication complexity of the disjointness problem. 
Finally, we generalize both these results from composition with the OR function to composition with arbitrary symmetric functions, yielding nearly optimal lower bounds in this setting as well.

UR - https://arxiv.org/abs/1807.06256 ER - TY - JOUR T1 - Coherent optical nano-tweezers for ultra-cold atoms Y1 - 2018 A1 - P. Bienias A1 - S. Subhankar A1 - Y. Wang A1 - T-C Tsui A1 - F. Jendrzejewski A1 - T. Tiecke A1 - G. Juzeliūnas A1 - L. Jiang A1 - S. L. Rolston A1 - J. V. Porto A1 - Alexey V. Gorshkov AB -

There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultra-cold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work opens a new frontier for the subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.

UR - https://arxiv.org/abs/1808.02487 ER - TY - JOUR T1 - A Coherent Spin-Photon Interface in Silicon JF - Nature Y1 - 2018 A1 - X. Mi A1 - M. Benito A1 - S. Putz A1 - D. M. Zajac A1 - J. M. Taylor A1 - Guido Burkard A1 - J. R. Petta AB -

Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins has been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and "all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2π) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons.

VL - 555 U4 - 599-603 UR - https://arxiv.org/abs/1710.03265 U5 - https://doi.org/10.1038/nature25769 ER - TY - JOUR T1 - A coherent spin–photon interface in silicon JF - Nature Y1 - 2018 A1 - X. Mi A1 - M. Benito A1 - S. Putz A1 - D. M. Zajac A1 - J. M. Taylor A1 - Guido Burkard A1 - J. R. Petta AB -

Electron spins in silicon quantum dots are attractive systems for quantum computing owing to their long coherence times and the promise of rapid scaling of the number of dots in a system using semiconductor fabrication techniques. Although nearest-neighbour exchange coupling of two spins has been demonstrated, the interaction of spins via microwave-frequency photons could enable long-distance spin–spin coupling and connections between arbitrary pairs of qubits (‘all-to-all’ connectivity) in a spin-based quantum processor. Realizing coherent spin–photon coupling is challenging because of the small magnetic-dipole moment of a single spin, which limits magnetic-dipole coupling rates to less than 1 kilohertz. Here we demonstrate strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin–photon coupling rates of more than 10 megahertz. The mechanism that enables the coherent spin–photon interactions is based on spin–charge hybridization in the presence of a magnetic-field gradient. In addition to spin–photon coupling, we demonstrate coherent control and dispersive readout of a single spin. These results open up a direct path to entangling single spins using microwave-frequency photons.

UR - https://www.nature.com/articles/nature25769#author-information U5 - 10.1038/nature25769 ER - TY - JOUR T1 - Cryogenic Trapped-Ion System for Large Scale Quantum Simulation Y1 - 2018 A1 - G. Pagano A1 - P. W. Hess A1 - H. B. Kaplan A1 - W. L. Tan A1 - P. Richerme A1 - P. Becker A1 - A. Kyprianidis A1 - J. Zhang A1 - E. Birckelbaw A1 - M. R. Hernandez A1 - Y. Wu A1 - C. Monroe AB -

We present a cryogenic ion trapping system designed for large scale quantum simulation of spin models. Our apparatus is based on a segmented-blade ion trap enclosed in a 4 K cryostat, which enables us to routinely trap over 100 171Yb+ ions in a linear configuration for hours due to a low background gas pressure from differential cryo-pumping. We characterize the cryogenic vacuum by using trapped ion crystals as a pressure gauge, measuring both inelastic and elastic collision rates with the molecular background gas. We demonstrate nearly equidistant ion spacing for chains of up to 44 ions using anharmonic axial potentials. This reliable production and lifetime enhancement of large linear ion chains will enable quantum simulation of spin models that are intractable with classical computer modelling.

UR - https://arxiv.org/abs/1802.03118 ER - TY - JOUR T1 - Dark state optical lattice with sub-wavelength spatial structure JF - Phys. Rev. Lett. Y1 - 2018 A1 - Yang Wang A1 - Sarthak Subhankar A1 - Przemyslaw Bienias A1 - Mateusz Lacki A1 - Tsz-Chun Tsui A1 - Mikhail A. Baranov A1 - Alexey V. Gorshkov A1 - Peter Zoller A1 - James V. Porto A1 - Steven L. Rolston AB -

We report on the experimental realization of a conservative optical lattice for cold atoms with a subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than 10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We study the band structure and dissipation of this lattice and find good agreement with theoretical predictions. Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 105times the excited state lifetime, and could be further improved with more laser intensity. The potential is readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with subwavelength spacings.

VL - 120 U4 - 083601 UR - https://link.aps.org/doi/10.1103/PhysRevLett.120.083601 U5 - 10.1103/PhysRevLett.120.083601 ER - TY - JOUR T1 - Demonstration of Bayesian quantum game on an ion trap quantum computer Y1 - 2018 A1 - Neal Solmeyer A1 - Norbert M. Linke A1 - Caroline Figgatt A1 - Kevin A. Landsman A1 - Radhakrishnan Balu A1 - George Siopsis A1 - Christopher Monroe AB -

We demonstrate a Bayesian quantum game on an ion trap quantum computer with five qubits. The players share an entangled pair of qubits and perform rotations on their qubit as the strategy choice. Two five-qubit circuits are sufficient to run all 16 possible strategy choice sets in a game with four possible strategies. The data are then parsed into player types randomly in order to combine them classically into a Bayesian framework. We exhaustively compute the possible strategies of the game so that the experimental data can be used to solve for the Nash equilibria of the game directly. Then we compare the payoff at the Nash equilibria and location of phase-change-like transitions obtained from the experimental data to the theory, and study how it changes as a function of the amount of entanglement.

UR - https://arxiv.org/abs/1802.08116 ER - TY - JOUR T1 - Diffusion Monte Carlo Versus Adiabatic Computation for Local Hamiltonians JF - Physical Review A Y1 - 2018 A1 - Jacob Bringewatt A1 - William Dorland A1 - Stephen P. Jordan A1 - Alan Mink AB -

Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real, nonnegative amplitudes. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k-SAT problems, use k-local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n-body interactions. Here we present a new 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

VL - 97 U4 - 022323 UR - https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.022323 CP - 2 U5 - 10.1103/PhysRevA.97.022323 ER - TY - JOUR T1 - Dissipation induced dipole blockade and anti-blockade in driven Rydberg systems JF - Phys. Rev. A Y1 - 2018 A1 - Jeremy T. Young A1 - Thomas Boulier A1 - Eric Magnan A1 - Elizabeth A. Goldschmidt A1 - Ryan M. Wilson A1 - Steven L. Rolston A1 - James V. Porto A1 - Alexey V. Gorshkov AB -

We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt et al.Phys. Rev. Lett. 116, 113001 (2016)] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.

VL - 97 U4 - 023424 UR - https://link.aps.org/doi/10.1103/PhysRevA.97.023424 U5 - 10.1103/PhysRevA.97.023424 ER - TY - JOUR T1 - Dynamic suppression of Rayleigh light scattering in dielectric resonators Y1 - 2018 A1 - Seunghwi Kim A1 - J. M. Taylor A1 - Gaurav Bahl AB -

The ultimate limits of performance for any classical optical system are set by sub-wavelength fluctuations within the host material, that may be frozen-in or even dynamically induced. The most common manifestation of such sub-wavelength disorder is Rayleigh light scattering, which is observed in nearly all wave-guiding technologies today and can lead to both irreversible radiative losses as well as undesirable intermodal coupling. While it has been shown that backscattering from disorder can be suppressed by breaking time-reversal symmetry in magneto-optic and topological insulator materials, common optical dielectrics possess neither of these properties. Here we demonstrate an optomechanical approach for dynamically suppressing Rayleigh backscattering within dielectric resonators. We achieve this by locally breaking time-reversal symmetry in a silica resonator through a Brillouin scattering interaction that is available in all materials. Near-complete suppression of Rayleigh backscattering is experimentally confirmed through three independent measurements -- the reduction of the back-reflections caused by scatterers, the elimination of a commonly seen normal-mode splitting effect, and by measurement of the reduction in intrinsic optical loss. More broadly, our results provide new evidence that it is possible to dynamically suppress Rayleigh backscattering within any optical dielectric medium, for achieving robust light propagation in nanophotonic devices in spite of the presence of scatterers or defects.

UR - https://arxiv.org/abs/1803.02366 ER - TY - JOUR T1 - Experimentally Generated Randomness Certified by the Impossibility of Superluminal Signals JF - Nature Y1 - 2018 A1 - Peter Bierhorst A1 - Emanuel Knill A1 - Scott Glancy A1 - Yanbao Zhang A1 - Alan Mink A1 - Stephen Jordan A1 - Andrea Rommal A1 - Yi-Kai Liu A1 - Bradley Christensen A1 - Sae Woo Nam A1 - Martin J. Stevens A1 - Lynden K. Shalm AB -

From dice to modern complex circuits, there have been many attempts to build increasingly better devices to generate random numbers. Today, randomness is fundamental to security and cryptographic systems, as well as safeguarding privacy. A key challenge with random number generators is that it is hard to ensure that their outputs are unpredictable. For a random number generator based on a physical process, such as a noisy classical system or an elementary quantum measurement, a detailed model describing the underlying physics is required to assert unpredictability. Such a model must make a number of assumptions that may not be valid, thereby compromising the integrity of the device. However, it is possible to exploit the phenomenon of quantum nonlocality with a loophole-free Bell test to build a random number generator that can produce output that is unpredictable to any adversary limited only by general physical principles. With recent technological developments, it is now possible to carry out such a loophole-free Bell test. Here we present certified randomness obtained from a photonic Bell experiment and extract 1024 random bits uniform to within 10−12. These random bits could not have been predicted within any physical theory that prohibits superluminal signaling and allows one to make independent measurement choices. To certify and quantify the randomness, we describe a new protocol that is optimized for apparatuses characterized by a low per-trial violation of Bell inequalities. We thus enlisted an experimental result that fundamentally challenges the notion of determinism to build a system that can increase trust in random sources. In the future, random number generators based on loophole-free Bell tests may play a role in increasing the security and trust of our cryptographic systems and infrastructure.

VL - 556 U4 - 223-226 UR - https://arxiv.org/abs/1803.06219 U5 - https://doi.org/10.1038/s41586-018-0019-0 ER - TY - JOUR T1 - Fractional quantum Hall phases of bosons with tunable interactions: From the Laughlin liquid to a fractional Wigner crystal Y1 - 2018 A1 - Tobias Graß A1 - Przemyslaw Bienias A1 - Michael Gullans A1 - Rex Lundgren A1 - Joseph Maciejko A1 - Alexey V. Gorshkov AB -

Highly tunable platforms for realizing topological phases of matter are emerging from atomic and photonic systems, and offer the prospect of designing interactions between particles. The shape of the potential, besides playing an important role in the competition between different fractional quantum Hall phases, can also trigger the transition to symmetry-broken phases, or even to phases where topological and symmetry-breaking order coexist. Here, we explore the phase diagram of an interacting bosonic model in the lowest Landau level at half-filling as two-body interactions are tuned. Apart from the well-known Laughlin liquid, Wigner crystal phase, stripe, and bubble phases, we also find evidence of a phase that exhibits crystalline order at fractional filling per crystal site. The Laughlin liquid transits into this phase when pairs of bosons strongly repel each other at relative angular momentum 4ℏ. We show that such interactions can be achieved by dressing ground-state cold atoms with multiple different-parity Rydberg states.

UR - https://arxiv.org/abs/1809.04493 ER - TY - JOUR T1 - High-fidelity quantum gates in Si/SiGe double quantum dots JF - Physical Review B Y1 - 2018 A1 - Maximilian Russ A1 - D. M. Zajac A1 - A. J. Sigillito A1 - F. Borjans A1 - J. M. Taylor A1 - J. R. Petta A1 - Guido Burkard AB -

Motivated by recent experiments of Zajac et al. [Science 359, 439 (2018)], we theoretically describe high-fidelity two-qubit gates using the exchange interaction between the spins in neighboring quantum dots subject to a magnetic field gradient. We use a combination of analytical calculations and numerical simulations to provide the optimal pulse sequences and parameter settings for the gate operation. We present a synchronization method which avoids detrimental spin flips during the gate operation and provide details about phase mismatches accumulated during the two-qubit gates which occur due to residual exchange interaction, nonadiabatic pulses, and off-resonant driving. By adjusting the gate times, synchronizing the resonant and off-resonant transitions, and compensating these phase mismatches by phase control, the overall gate fidelity can be increased significantly.

VL - 97 U4 - 085421 UR - https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.085421 CP - 8 U5 - 10.1103/PhysRevB.97.085421 ER - TY - JOUR T1 - In Defense of a "Single-World" Interpretation of Quantum Mechanics JF - forthcoming in Studies in History and Philosophy of Modern Physics Y1 - 2018 A1 - Jeffrey Bub AB -

In a recent result, Frauchiger and Renner argue that if quantum theory accurately describes complex systems like observers who perform measurements, then "we are forced to give up the view that there is one single reality." Following a review of the Frauchiger-Renner argument, I argue that quantum mechanics should be understood probabilistically, as a new sort of non-Boolean probability theory, rather than representationally, as a theory about the elementary constituents of the physical world and how these elements evolve dynamically over time. I show that this way of understanding quantum mechanics is not in conflict with a consistent "single-world" interpretation of the theory.

U4 - 15 UR - https://arxiv.org/abs/1804.03267 ER - TY - JOUR T1 - Photon propagation through dissipative Rydberg media at large input rates Y1 - 2018 A1 - Przemyslaw Bienias A1 - James Douglas A1 - Asaf Paris-Mandoki A1 - Paraj Titum A1 - Ivan Mirgorodskiy A1 - Christoph Tresp A1 - Emil Zeuthen A1 - Michael Gullans A1 - Marco Manzoni A1 - Sebastian Hofferberth A1 - Darrick Chang A1 - Alexey V. Gorshkov AB -

We study the dissipative propagation of quantized light in interacting Rydberg media under the conditions of electromagnetically induced transparency (EIT). Rydberg blockade physics in optically dense atomic media leads to strong dissipative interactions between single photons. The regime of high incoming photon flux constitutes a challenging many-body dissipative problem. We experimentally study in detail for the first time the pulse shapes and the second-order correlation function of the outgoing field and compare our data with simulations based on two novel theoretical approaches well-suited to treat this many-photon limit. At low incoming flux, we report good agreement between both theories and the experiment. For higher input flux, the intensity of the outgoing light is lower than that obtained from theoretical predictions. We explain this discrepancy using a simple phenomenological model taking into account pollutants, which are nearly-stationary Rydberg excitations coming from the reabsorption of scattered probe photons. At high incoming photon rates, the blockade physics results in unconventional shapes of measured correlation functions. 

UR - https://arxiv.org/abs/1807.07586 ER - TY - JOUR T1 - Photon Subtraction by Many-Body Decoherence Y1 - 2018 A1 - Callum R. Murray A1 - Ivan Mirgorodskiy A1 - Christoph Tresp A1 - Christoph Braun A1 - Asaf Paris-Mandoki A1 - Alexey V. Gorshkov A1 - Sebastian Hofferberth A1 - Thomas Pohl AB -

We present an experimental and theoretical investigation of the scattering-induced decoherence of multiple photons stored in a strongly interacting atomic ensemble. We derive an exact solution to this many-body problem, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis demonstrates a correlated coherence-protection process, in which the induced decoherence of one photon can preserve the spatial coherence of all others. We discuss how this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability.

UR - https://arxiv.org/abs/1710.10047 U5 - https://doi.org/10.1103/PhysRevLett.120.113601 ER - TY - JOUR T1 - Quantum Channel Simulation and the Channel's Smooth Max-Information Y1 - 2018 A1 - Kun Fang A1 - Xin Wang A1 - Marco Tomamichel A1 - Mario Berta AB -

We study the general framework of quantum channel simulation, that is, the ability of a quantum channel to simulate another one using different classes of codes. First, we show that the minimum error of simulation and the one-shot quantum simulation cost under no-signalling assisted codes are given by semidefinite programs. Second, we introduce the channel's smooth max-information, which can be seen as a one-shot generalization of the mutual information of a quantum channel. We provide an exact operational interpretation of the channel's smooth max-information as the one-shot quantum simulation cost under no-signalling assisted codes. Third, we derive the asymptotic equipartition property of the channel's smooth max-information, i.e., it converges to the quantum mutual information of the channel in the independent and identically distributed asymptotic limit. This implies the quantum reverse Shannon theorem in the presence of no-signalling correlations. Finally, we explore the simulation cost of various quantum channels.

UR - https://arxiv.org/abs/1807.05354 ER - TY - JOUR T1 - Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning JF - To appear at the 46th International Colloquium on Automata, Languages and Programming (ICALP 2019) Y1 - 2018 A1 - Fernando G. S. L. Brandão A1 - Amir Kalev A1 - Tongyang Li A1 - Cedric Yen-Yu Lin A1 - Krysta M. Svore A1 - Xiaodi Wu AB -

We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank r, and sparsity s. The first algorithm assumes an input model where one is given access to entries of the matrices at unit cost. We show that it has run time O~(s2(m−−√ε−10+n−−√ε−12)), where ε is the error. This gives an optimal dependence in terms of m,n and quadratic improvement over previous quantum algorithms when m≈n. The second algorithm assumes a fully quantum input model in which the matrices are given as quantum states. We show that its run time is O~(m−−√+poly(r))⋅poly(logm,logn,B,ε−1), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only poly-logarithmically in n and polynomially in r. We apply the second SDP solver to the problem of learning a good description of a quantum state with respect to a set of measurements: Given m measurements and copies of an unknown state ρ, we show we can find in time m−−√⋅poly(logm,logn,r,ε−1) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as ρ on the m measurements, up to error ε. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians with a poly-logarithmic dependence on its dimension, which could be of independent interest.

UR - https://arxiv.org/abs/1710.02581 ER - TY - JOUR T1 - Quantum Supremacy and the Complexity of Random Circuit Sampling Y1 - 2018 A1 - Adam Bouland A1 - Bill Fefferman A1 - Chinmay Nirkhe A1 - Umesh Vazirani AB -

A critical milestone on the path to useful quantum computers is quantum supremacy - a demonstration of a quantum computation that is prohibitively hard for classical computers. A leading near-term candidate, put forth by the Google/UCSB team, is sampling from the probability distributions of randomly chosen quantum circuits, which we call Random Circuit Sampling (RCS). In this paper we study both the hardness and verification of RCS. While RCS was defined with experimental realization in mind, we show complexity theoretic evidence of hardness that is on par with the strongest theoretical proposals for supremacy. Specifically, we show that RCS satisfies an average-case hardness condition - computing output probabilities of typical quantum circuits is as hard as computing them in the worst-case, and therefore #P-hard. Our reduction exploits the polynomial structure in the output amplitudes of random quantum circuits, enabled by the Feynman path integral. In addition, it follows from known results that RCS satisfies an anti-concentration property, making it the first supremacy proposal with both average-case hardness and anti-concentration. 

UR - https://arxiv.org/abs/1803.04402 ER - TY - JOUR T1 - Resonantly driven CNOT gate for electron spins JF - Science Y1 - 2018 A1 - D. M. Zajac A1 - A. J. Sigillito A1 - M. Russ A1 - F. Borjans A1 - J. M. Taylor A1 - Guido Burkard A1 - J. R. Petta AB -

Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon.

VL - 359 U4 - 439-442 UR - http://science.sciencemag.org/content/359/6374/439 CP - 6374 U5 - 10.1126/science.aao5965 ER - TY - JOUR T1 - Robust two-qubit gates in a linear ion crystal using a frequency-modulated driving force JF - Physical Review Letters Y1 - 2018 A1 - Pak Hong Leung A1 - Kevin A. Landsman A1 - Caroline Figgatt A1 - Norbert M. Linke A1 - Christopher Monroe A1 - Kenneth R. Brown AB -

In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multi-qubit logical gates. Any residual entanglement between the internal and motional states of the ions will result in decoherence errors, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated (FM) driving force to minimize such errors and implement it experimentally. In simulation, we obtained an optimized FM gate that can suppress decoherence to less than 10−4 and is robust against a frequency drift of more than ±1 kHz. The two-qubit gate was tested in a five-qubit trapped ion crystal, with 98.3(4)% fidelity for a Mølmer-Sørensen entangling gate and 98.6(7)% for a controlled-not (CNOT) gate. We also show an optimized FM two-qubit gate for 17 ions, proving the scalability of our method.

VL - 120 U4 - 020501 UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.020501 CP - 2 U5 - 10.1103/PhysRevLett.120.020501 ER - TY - JOUR T1 - Single-photon bound states in atomic ensembles Y1 - 2018 A1 - Yidan Wang A1 - Michael Gullans A1 - Antoine Browaeys A1 - J. V. Porto A1 - Darrick E. Chang A1 - Alexey V. Gorshkov AB -

We illustrate the existence of single-excitation bound states for propagating photons interacting with N two-level atoms. These bound states can be calculated from an effective spin model, and their existence relies on dissipation in the system. The appearance of these bound states is in a one-to-one correspondence with zeros in the single-photon transmission and with divergent bunching in the second-order photon-photon correlation function. We also formulate a dissipative version of Levinson's theorem for this system by looking at the relation between the number of bound states and the winding number of the transmission phases. This theorem allows a direct experimental measurement of the number of bound states using the measured transmission phases.

UR - https://arxiv.org/abs/1809.01147 ER - TY - JOUR T1 - Spectrum estimation of density operators with alkaline-earth atoms Y1 - 2018 A1 - Michael E. Beverland A1 - Jeongwan Haah A1 - Gorjan Alagic A1 - Gretchen K. Campbell A1 - Ana Maria Rey A1 - Alexey V. Gorshkov AB -

We show that Ramsey spectroscopy of fermionic alkaline-earth atoms in a square-well trap provides an efficient and accurate estimate for the eigenspectrum of a density matrix whose n copies are stored in the nuclear spins of n such atoms. This spectrum estimation is enabled by the high symmetry of the interaction Hamiltonian, dictated, in turn, by the decoupling of the nuclear spin from the electrons and by the shape of the square-well trap. Practical performance of this procedure and its potential applications to quantum computing, quantum simulation, and time-keeping with alkalineearth atoms are discussed.

VL - 120 UR - http://arxiv.org/abs/1608.02045 CP - 025301 U5 - https://doi.org/10.1103/PhysRevLett.120.025301 ER - TY - JOUR T1 - A spinor Bose-Einstein condensate phase-sensitive amplifier for SU(1,1) interferometry JF - Phys. Rev Y1 - 2018 A1 - J. P. Wrubel A1 - A. Schwettmann A1 - D. P. Fahey A1 - Z. Glassman A1 - H. K. Pechkis A1 - P. F. Griffin A1 - R. Barnett A1 - E. Tiesinga A1 - P. D. Lett AB -

The SU(1,1) interferometer was originally conceived as a Mach-Zehnder interferometer with the beam-splitters replaced by parametric amplifiers. The parametric amplifiers produce states with correlations that result in enhanced phase sensitivity. F=1 spinor Bose-Einstein condensates (BECs) can serve as the parametric amplifiers for an atomic version of such an interferometer by collisionally producing entangled pairs of ⟨F=1,m=±1| atoms. We simulate the effect of single and double-sided seeding of the inputs to the amplifier using the truncated-Wigner approximation. We find that single-sided seeding degrades the performance of the interferometer exactly at the phase the unseeded interferometer should operate the best. Double-sided seeding results in a phase-sensitive amplifier, where the maximal sensitivity is a function of the phase relationship between the input states of the amplifier. In both single and double-sided seeding we find there exists an optimal phase shift that achieves sensitivity beyond the standard quantum limit. Experimentally, we demonstrate a spinor phase-sensitive amplifier using a BEC of 23Na in an optical dipole trap. This configuration could be used as an input to such an interferometer. We are able to control the initial phase of the double-seeded amplifier, and demonstrate sensitivity to initial population fractions as small as 0.1\%. 

VL - A 98 UR - https://arxiv.org/abs/1807.06676 CP - 023620 ER - TY - JOUR T1 - Structure of Correlated Worldline Theories of Quantum Gravity JF - Phys. Rev. Y1 - 2018 A1 - Andrei O. Barvinsky A1 - Daniel Carney A1 - Philip C. E. Stamp AB -

We consider the general form of "Correlated Worldline" (CWL) theories of quantum gravity. We show that one can have 2 different kinds of CWL theory, in which the generating functional is written as either a sum or a product over multiple copies of the coupled matter and gravitational fields. In both versions, the paths in a functional formulation are correlated via gravity itself, causing a breakdown of the superposition principle; however, the product form survives consistency tests not satisfied by the summed form. To better understand the structure of these two theories, we show how to perform diagrammatic expansions in the gravitational coupling for each version of CWL theory, using particle propagation and scalar fields as examples. We explicitly calculate contributions to 2-point and 4-point functions, again for each version of the theory, up to 2nd-order in the gravitational coupling.

VL - D U4 - 084052 UR - https://arxiv.org/abs/1806.08043 CP - 98 U5 - https://doi.org/10.1103/PhysRevD.98.084052 ER - TY - JOUR T1 - Study of radon reduction in gases for rare event search experiments Y1 - 2018 A1 - K. Pushkin A1 - C. Akerlof A1 - D. Anbajagane A1 - J. Armstrong A1 - M. Arthurs A1 - Jacob Bringewatt A1 - T. Edberg A1 - C. Hall A1 - M. Lei A1 - R. Raymond A1 - M. Reh A1 - D. Saini A1 - A. Sander A1 - J. Schaefer A1 - D. Seymour A1 - N. Swanson A1 - Y. Wang A1 - W. Lorenzon AB -

The noble elements, argon and xenon, are frequently employed as the target and event detector for weakly interacting particles such as neutrinos and Dark Matter. For such rare processes, background radiation must be carefully minimized. Radon provides one of the most significant contaminants since it is an inevitable product of trace amounts of natural uranium. To design a purification system for reducing such contamination, the adsorption characteristics of radon in nitrogen, argon, and xenon carrier gases on various types of charcoals with different adsorbing properties and intrinsic radioactive purities have been studied in the temperature range of 190-295 K at flow rates of 0.5 and 2 standard liters per minute. Essential performance parameters for the various charcoals include the average breakthrough times (τ), dynamic adsorption coefficients (ka) and the number of theoretical stages (n). It is shown that the ka-values for radon in nitrogen, argon, and xenon increase as the temperature of the charcoal traps decreases, and that they are significantly larger in nitrogen and argon than in xenon gas due to adsorption saturation effects. It is found that, unlike in xenon, the dynamic adsorption coefficients for radon in nitrogen and argon strictly obey the Arrhenius law. The experimental results strongly indicate that nitric acid etched Saratech is the best candidate among all used charcoal brands. It allows reducing total radon concentration in the LZ liquid Xe detector to meet the ultimate goal in the search for Dark Matter.

UR - https://arxiv.org/abs/1805.11306 U5 - https://doi.org/10.1016/j.nima.2018.06.076 ER - TY - BOOK T1 - Totally random: why nobody understands quantum mechanics (a serious comic on entanglement) Y1 - 2018 A1 - Jeffrey Bub A1 - Tanya Bub PB - Princeton University Press ER - TY - JOUR T1 - Unitary Entanglement Construction in Hierarchical Networks Y1 - 2018 A1 - Aniruddha Bapat A1 - Zachary Eldredge A1 - James R. Garrison A1 - Abhinav Desphande A1 - Frederic T. Chong A1 - Alexey V. Gorshkov AB -

The construction of large-scale quantum computers will require modular architectures that allow physical resources to be localized in easy-to-manage packages. In this work, we examine the impact of different graph structures on the preparation of entangled states. We begin by explaining a formal framework, the hierarchical product, in which modular graphs can be easily constructed. This framework naturally leads us to suggest a class of graphs, which we dub hierarchies. We argue that such graphs have favorable properties for quantum information processing, such as a small diameter and small total edge weight, and use the concept of Pareto efficiency to identify promising quantum graph architectures. We present numerical and analytical results on the speed at which large entangled states can be created on nearest-neighbor grids and hierarchy graphs. We also present a scheme for performing circuit placement--the translation from circuit diagrams to machine qubits--on quantum systems whose connectivity is described by hierarchies.

UR - https://arxiv.org/abs/1808.07876 ER - TY - JOUR T1 - Advances in Quantum Reinforcement Learning JF - IEEE SMC, Banff, AB Y1 - 2017 A1 - Vedran Dunjko A1 - J. M. Taylor A1 - Hans J. Briegel AB -

In recent times, there has been much interest in quantum enhancements of machine learning, specifically in the context of data mining and analysis. Reinforcement learning, an interactive form of learning, is, in turn, vital in artificial intelligence-type applications. Also in this case, quantum mechanics was shown to be useful, in certain instances. Here, we elucidate these results, and show that quantum enhancements can be achieved in a new setting: the setting of learning models which learn how to improve themselves -- that is, those that meta-learn. While not all learning models meta-learn, all non-trivial models have the potential of being "lifted", enhanced, to meta-learning models. Our results show that also such models can be quantum-enhanced to make even better learners. In parallel, we address one of the bottlenecks of current quantum reinforcement learning approaches: the need for so-called oracularized variants of task environments. Here we elaborate on a method which realizes these variants, with minimal changes in the setting, and with no corruption of the operative specification of the environments. This result may be important in near-term experimental demonstrations of quantum reinforcement learning.

U4 - 282-287 UR - https://arxiv.org/abs/1811.08676 U5 - https://doi.org/10.1109/SMC.2017.8122616 ER - TY - JOUR T1 - Development of a new UHV/XHV pressure standard (cold atom vacuum standard) JF - Metrologia Y1 - 2017 A1 - Julia Scherschligt A1 - James A Fedchak A1 - Daniel S Barker A1 - Stephen Eckel A1 - Nikolai Klimov A1 - Constantinos Makrides A1 - Eite Tiesinga AB -

The National Institute of Standards and Technology has recently begun a program to develop a primary pressure standard that is based on ultra-cold atoms, covering a pressure range of 1 x 10-6 to 1 x 10-10 Pa and possibly lower. These pressures correspond to the entire ultra-high vacuum range and extend into the extreme-high vacuum. This cold-atom vacuum standard (CAVS) is both a primary standard and absolute sensor of vacuum. The CAVS is based on the loss of cold, sensor atoms (such as the alkali-metal lithium) from a magnetic trap due to collisions with the background gas (primarily H2) in the vacuum. The pressure is determined from a thermally-averaged collision cross section, which is a fundamental atomic property, and the measured loss rate. The CAVS is primary because it will use collision cross sections determined from ab initio calculations for the Li + H2 system. Primary traceability is transferred to other systems of interest using sensitivity coefficients.

VL - 54 UR - https://arxiv.org/abs/1801.10120 CP - 6 U5 - https://doi.org/10.1088/1681-7575/aa8a7b ER - TY - JOUR T1 - Dynamically induced robust phonon transport and chiral cooling in an optomechanical system JF - Nature Communications Y1 - 2017 A1 - Seunghwi Kim A1 - Xunnong Xu A1 - J. M. Taylor A1 - Gaurav Bahl AB -

The transport of sound and heat, in the form of phonons, has a fundamental material limit: disorder-induced scattering. In electronic and optical settings, introduction of chiral transport - in which carrier propagation exhibits broken parity symmetry - provides robustness against such disorder by preventing elastic backscattering. Here we experimentally demonstrate a path for achieving robust phonon transport even in the presence of material disorder, by dynamically inducing chirality through traveling-wave optomechanical coupling. Using this approach, we demonstrate dramatic optically-induced chiral transport for clockwise and counterclockwise phonons in a symmetric resonator. This induced chirality also enhances isolation from the thermal bath and leads to gain-free reduction of the intrinsic damping of the phonons. Surprisingly, this passive mechanism is also accompanied by a chiral reduction in heat load leading to a novel optical cooling of the mechanics. This technique has the potential to improve upon the fundamental thermal limits of resonant mechanical sensor, which cannot be otherwise attained through conventional optomechanical cooling.

VL - 8 U4 - 205 UR - https://arxiv.org/abs/1609.08674 U5 - 10.1038/s41467-017-00247-7 ER - TY - JOUR T1 - Entanglement area laws for long-range interacting systems JF - Physical Review Letters Y1 - 2017 A1 - Zhe-Xuan Gong A1 - Michael Foss-Feig A1 - Fernando G. S. L. Brandão A1 - Alexey V. Gorshkov AB -

We prove that the entanglement entropy of any state evolved under an arbitrary 1/rα long-range-interacting D-dimensional lattice spin Hamiltonian cannot change faster than a rate proportional to the boundary area for any α > D + 1. We also prove that for any α > 2D + 2, the ground state of such a Hamiltonian satisfies the entanglement area law if it can be transformed along a gapped adiabatic path into a ground state known to satisfy the area law. These results significantly generalize their existing counterparts for short-range interacting systems, and are useful for identifying dynamical phase transitions and quantum phase transitions in the presence of long-range interactions.

VL - 119 U4 - 050501 UR - https://arxiv.org/abs/1702.05368 CP - 5 U5 - 10.1103/PhysRevLett.119.050501 ER - TY - JOUR T1 - Experimental Study of Optimal Measurements for Quantum State Tomography JF - Physical Review Letters Y1 - 2017 A1 - Sosa-Martinez, H. A1 - Lysne, N. K. A1 - Baldwin, C. H. A1 - Kalev, A. A1 - Deutsch, I. H. A1 - Jessen, P. S. AB -

Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to develop optimized measurement strategies that are both accurate and efficient. We compare a variety of strategies using nearly pure test states. Those that are informationally complete for all states are found to be accurate and reliable even in the presence of errors in the measurements themselves, while those designed to be complete only for pure states are far more efficient but highly sensitive to such errors. Our results highlight the unavoidable trade-offs inherent in quantum tomography.

VL - 119 U4 - 150401 UR - https://link.aps.org/doi/10.1103/PhysRevLett.119.150401 CP - 15 U5 - 10.1103/PhysRevLett.119.150401 ER - TY - JOUR T1 - Experimentally Generated Random Numbers Certified by the Impossibility of Superluminal Signaling Y1 - 2017 A1 - Peter Bierhorst A1 - Emanuel Knill A1 - Scott Glancy A1 - Alan Mink A1 - Stephen P. Jordan A1 - Andrea Rommal A1 - Yi-Kai Liu A1 - Bradley Christensen A1 - Sae Woo Nam A1 - Lynden K. Shalm AB -

Random numbers are an important resource for applications such as numerical simulation and secure communication. However, it is difficult to certify whether a physical random number generator is truly unpredictable. Here, we exploit the phenomenon of quantum nonlocality in a loophole-free photonic Bell test experiment for the generation of randomness that cannot be predicted within any physical theory that allows one to make independent measurement choices and prohibits superluminal signaling. To certify and quantify the randomness, we describe a new protocol that performs well in an experimental regime characterized by low violation of Bell inequalities. Applying an extractor function to our data, we obtained 256 new random bits, uniform to within 0.001.

UR - https://arxiv.org/abs/1702.05178# ER - TY - JOUR T1 - Exponential Quantum Speed-ups for Semidefinite Programming with Applications to Quantum Learning Y1 - 2017 A1 - Fernando G. S. L. Brandão A1 - Amir Kalev A1 - Tongyang Li A1 - Cedric Yen-Yu Lin A1 - Krysta M. Svore A1 - Xiaodi Wu AB -

We give semidefinite program (SDP) quantum solvers with an exponential speed-up over classical ones. Specifically, we consider SDP instances with m constraint matrices of dimension n, each of rank at most r, and assume that the input matrices of the SDP are given as quantum states (after a suitable normalization). Then we show there is a quantum algorithm that solves the SDP feasibility problem with accuracy ǫ by using √ m log m · poly(log n,r, ǫ −1 ) quantum gates. The dependence on n provides an exponential improvement over the work of Brand ˜ao and Svore [6] and the work of van Apeldoorn et al. [23], and demonstrates an exponential quantum speed-up when m and r are small. We apply the SDP solver to the problem of learning a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state ρ, we show we can find in time √ m log m · poly(log n,r, ǫ −1 ) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as ρ on the m measurements up to error ǫ. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes’ principle. As in previous work, we obtain our algorithm by “quantizing” classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians with a poly-logarithmic dependence on its dimension based on the techniques developed in quantum principal component analysis, which could be of independent interest. Our quantum SDP solver is different from previous ones in the following two aspects: (1) it follows from a zero-sum game approach of Hazan [11] of solving SDPs rather than the primal-dual approach by Arora and Kale [5]; and (2) it does not rely on any sparsity assumption of the input matrices.

UR - https://arxiv.org/abs/1710.02581 ER - TY - JOUR T1 - Extracting entanglement geometry from quantum states JF - Physical Review Letters Y1 - 2017 A1 - Katharine Hyatt A1 - James R. Garrison A1 - Bela Bauer AB -

Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network - and hence the geometry - is largely fixed a priori by the choice of tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of non-interacting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

VL - 119 UR - https://arxiv.org/abs/1704.01974 CP - 14 U5 - 10.1103/PhysRevLett.119.140502 ER - TY - JOUR T1 - Fast optimization algorithms and the cosmological constant JF - Physical Review D Y1 - 2017 A1 - Ning Bao A1 - Raphael Bousso A1 - Stephen P. Jordan A1 - Brad Lackey AB -

Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of an NP-hard problem. The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10−120 in a randomly generated 109 -dimensional ADK landscape.

VL - 96 U4 - 103512 UR - https://arxiv.org/abs/1706.08503 CP - 10 U5 - 10.1103/PhysRevD.96.103512 ER - TY - JOUR T1 - Input-output theory for spin-photon coupling in Si double quantum dots JF - Physical Review B Y1 - 2017 A1 - Benito, M. A1 - Mi, X. A1 - J. M. Taylor A1 - Petta, J. R. A1 - Burkard, Guido AB -

The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.

VL - 96 U4 - 235434 UR - https://link.aps.org/doi/10.1103/PhysRevB.96.235434 CP - 23 U5 - 10.1103/PhysRevB.96.235434 ER - TY - JOUR T1 - Observation of a Many-Body Dynamical Phase Transition with a 53-Qubit Quantum Simulator JF - Nature Y1 - 2017 A1 - J. Zhang A1 - G. Pagano A1 - P. W. Hess A1 - A. Kyprianidis A1 - P. Becker A1 - H. Kaplan A1 - Alexey V. Gorshkov A1 - Z. -X. Gong A1 - C. Monroe AB -

A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, the simulator can tackle a wider range of problems, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. We use a quantum simulator composed of up to 53 qubits to study a non-equilibrium phase transition in the transverse field Ising model of magnetism, in a regime where conventional statistical mechanics does not apply. The qubits are represented by trapped ion spins that can be prepared in a variety of initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with near 99% efficiency. This allows the single-shot measurement of arbitrary many-body correlations for the direct probing of the dynamical phase transition and the uncovering of computationally intractable features that rely on the long-range interactions and high connectivity between the qubits.

VL - 551 U4 - 601-604 UR - https://www.nature.com/articles/nature24654 U5 - 10.1038/nature24654 ER - TY - JOUR T1 - Optimal length of decomposition sequences composed of imperfect gates JF - Quantum Information Processing Y1 - 2017 A1 - Yunseong Nam A1 - R. Blümel AB -

Quantum error correcting circuitry is both a resource for correcting errors and a source for generating errors. A balance has to be struck between these two aspects. Perfect quantum gates do not exist in nature. Therefore, it is important to investigate how flaws in the quantum hardware affect quantum computing performance. We do this in two steps. First, in the presence of realistic, faulty quantum hardware, we establish how quantum error correction circuitry achieves reduction in the extent of quantum information corruption. Then, we investigate fault-tolerant gate sequence techniques that result in an approximate phase rotation gate, and establish the existence of an optimal length Lopt of the length L of the decomposition sequence. The existence of Lopt is due to the competition between the increase in gate accuracy with increasing L, but the decrease in gate performance due to the diffusive proliferation of gate errors due to faulty basis gates. We present an analytical formula for the gate fidelity as a function of L that is in satisfactory agreement with the results of our simulations and allows the determination of Lopt via the solution of a transcendental equation. Our result is universally applicable since gate sequence approximations also play an important role, e.g., in atomic and molecular physics and in nuclear magnetic resonance.

VL - 16 U4 - 123 UR - https://link.springer.com/article/10.1007/s11128-017-1571-5 U5 - 10.1007/s11128-017-1571-5 ER - TY - JOUR T1 - Provable quantum state tomography via non-convex methods Y1 - 2017 A1 - Anastasios Kyrillidis A1 - Amir Kalev A1 - Dohuyng Park A1 - Srinadh Bhojanapalli A1 - Constantine Caramanis A1 - Sujay Sanghavi AB -

With nowadays steadily growing quantum processors, it is required to develop new quantum tomography tools that are tailored for high-dimensional systems. In this work, we describe such a computational tool, based on recent ideas from non-convex optimization. The algorithm excels in the compressed-sensing-like setting, where only a few data points are measured from a lowrank or highly-pure quantum state of a high-dimensional system. We show that the algorithm can practically be used in quantum tomography problems that are beyond the reach of convex solvers, and, moreover, is faster than other state-of-the-art non-convex approaches. Crucially, we prove that, despite being a non-convex program, under mild conditions, the algorithm is guaranteed to converge to the global minimum of the problem; thus, it constitutes a provable quantum state tomography protocol.

UR - https://arxiv.org/abs/1711.02524 ER - TY - JOUR T1 - Quantum algorithm for linear differential equations with exponentially improved dependence on precision JF - Communications in Mathematical Physics Y1 - 2017 A1 - Dominic W. Berry A1 - Andrew M. Childs A1 - Aaron Ostrander A1 - Guoming Wang AB -

We present a quantum algorithm for systems of (possibly inhomogeneous) linear ordinary differential equations with constant coefficients. The algorithm produces a quantum state that is proportional to the solution at a desired final time. The complexity of the algorithm is polynomial in the logarithm of the inverse error, an exponential improvement over previous quantum algorithms for this problem. Our result builds upon recent advances in quantum linear systems algorithms by encoding the simulation into a sparse, well-conditioned linear system that approximates evolution according to the propagator using a Taylor series. Unlike with finite difference methods, our approach does not require additional hypotheses to ensure numerical stability.

VL - 356 U4 - 1057-1081 UR - https://arxiv.org/abs/1701.03684 CP - 3 ER - TY - JOUR T1 - On the readiness of quantum optimization machines for industrial applications Y1 - 2017 A1 - Alejandro Perdomo-Ortiz A1 - Alexander Feldman A1 - Asier Ozaeta A1 - Sergei V. Isakov A1 - Zheng Zhu A1 - Bryan O'Gorman A1 - Helmut G. Katzgraber A1 - Alexander Diedrich A1 - Hartmut Neven A1 - Johan de Kleer A1 - Brad Lackey A1 - Rupak Biswas AB -

There have been multiple attempts to demonstrate that quantum annealing and, in particular, quantum annealing on quantum annealing machines, has the potential to outperform current classical optimization algorithms implemented on CMOS technologies. The benchmarking of these devices has been controversial. Initially, random spin-glass problems were used, however, these were quickly shown to be not well suited to detect any quantum speedup. Subsequently, benchmarking shifted to carefully crafted synthetic problems designed to highlight the quantum nature of the hardware while (often) ensuring that classical optimization techniques do not perform well on them. Even worse, to date a true sign of improved scaling with the number problem variables remains elusive when compared to classical optimization techniques. Here, we analyze the readiness of quantum annealing machines for real-world application problems. These are typically not random and have an underlying structure that is hard to capture in synthetic benchmarks, thus posing unexpected challenges for optimization techniques, both classical and quantum alike. We present a comprehensive computational scaling analysis of fault diagnosis in digital circuits, considering architectures beyond D-wave quantum annealers. We find that the instances generated from real data in multiplier circuits are harder than other representative random spin-glass benchmarks with a comparable number of variables. Although our results show that transverse-field quantum annealing is outperformed by state-of-the-art classical optimization algorithms, these benchmark instances are hard and small in the size of the input, therefore representing the first industrial application ideally suited for near-term quantum annealers.

UR - https://arxiv.org/abs/1708.09780 ER - TY - JOUR T1 - Why Bohr was (Mostly) Right Y1 - 2017 A1 - Jeffrey Bub AB -

After a discussion of the Frauchiger-Renner argument that no “singleworld” interpretation of quantum mechanics can be self-consistent, I propose a “Bohrian” alternative to many-worlds or QBism as the rational option.

UR - https://arxiv.org/abs/1711.01604 ER - TY - JOUR T1 - Anomalous broadening in driven dissipative Rydberg systems JF - Physical Review Letters Y1 - 2016 A1 - E. A. Goldschmidt A1 - T. Boulier A1 - R. C. Brown A1 - S. B. Koller A1 - J. T. Young A1 - Alexey V. Gorshkov A1 - S. L. Rolston A1 - J. V. Porto AB - We observe interaction-induced broadening of the two-photon 5s-18s transition in 87Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly two orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with spontaneously created populations of nearby np states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms. VL - 116 U4 - 113001 UR - http://arxiv.org/abs/1510.08710 CP - 11 U5 - 10.1103/PhysRevLett.116.113001 ER - TY - BOOK T1 - Bananaworld: Quantum Mechanics for Primates Y1 - 2016 A1 - Jeffrey Bub AB -

This is intended to be a serious paper, in spite of the title. The idea is that quantum mechanics is about probabilistic correlations, i.e., about the structure of information, since a theory of information is essentially a theory of probabilistic correlations. To make this clear, it suffices to consider measurements of two binary-valued observables, x with outcomes a = 0 or 1, performed by Alice in a region A, and y with outcomes b = 0 or 1 performed by Bob in a separated region B --or, to emphasize the banality of the phenomena, two ways of peeling a banana, resulting in one of two tastes. The imagined bananas of Bananaworld are non-standard, with operational or phenomenal probabilistic correlations for peelings and tastes that lie outside the polytope of local correlations. The 'no go' theorems tell us that we can't shoe-horn these correlations into a classical correlation polytope, which has the structure of a simplex, by supposing that something has been left out of the story, without giving up fundamental principles that define what we mean by a physical system. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are shown to be generic features of correlations that lie outside the local correlation polytope. As far as the conceptual problems are concerned, we might as well talk about bananas.

PB - Oxford University Press UR - http://arxiv.org/abs/1211.3062v2 ER - TY - JOUR T1 - Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions Y1 - 2016 A1 - Kenneth R. Brown A1 - Jaewan Kim A1 - Christopher Monroe AB - The first generation of quantum computers are on the horizon, fabricated from quantum hardware platforms that may soon be able to tackle certain tasks that cannot be performed or modelled with conventional computers. These quantum devices will not likely be universal or fully programmable, but special-purpose processors whose hardware will be tightly co-designed with particular target applications. Trapped atomic ions are a leading platform for first generation quantum computers, but are also fundamentally scalable to more powerful general purpose devices in future generations. This is because trapped ion qubits are atomic clock standards that can be made identical to a part in 10^15, and their quantum circuit connectivity can be reconfigured through the use of external fields, without modifying the arrangement or architecture of the qubits themselves. In this article we show how a modular quantum computer of any size can be engineered from ion crystals, and how the wiring between ion trap qubits can be tailored to a variety of applications and quantum computing protocols. UR - http://arxiv.org/abs/1602.02840 ER - TY - CONF T1 - Computational Security of Quantum Encryption T2 - Computational Security of Quantum Encryption. In: Nascimento A., Barreto P. (eds) Information Theoretic Security. Y1 - 2016 A1 - Gorjan Alagic A1 - Anne Broadbent A1 - Bill Fefferman A1 - Tommaso Gagliardoni A1 - Christian Schaffner A1 - Michael St. Jules AB -

Quantum-mechanical devices have the potential to transform cryptography. Most research in this area has focused either on the information-theoretic advantages of quantum protocols or on the security of classical cryptographic schemes against quantum attacks. In this work, we initiate the study of another relevant topic: the encryption of quantum data in the computational setting. In this direction, we establish quantum versions of several fundamental classical results. First, we develop natural definitions for private-key and public-key encryption schemes for quantum data. We then define notions of semantic security and indistinguishability, and, in analogy with the classical work of Goldwasser and Micali, show that these notions are equivalent. Finally, we construct secure quantum encryption schemes from basic primitives. In particular, we show that quantum-secure one-way functions imply IND-CCA1-secure symmetric-key quantum encryption, and that quantum-secure trapdoor one-way permutations imply semantically-secure public-key quantum encryption.

JA - Computational Security of Quantum Encryption. In: Nascimento A., Barreto P. (eds) Information Theoretic Security. UR - https://link.springer.com/chapter/10.1007%2F978-3-319-49175-2_3 ER - TY - JOUR T1 - Experimental demonstration of quantum fault tolerance Y1 - 2016 A1 - N. M. Linke A1 - M. Gutierrez A1 - K. A. Landsman A1 - C. Figgatt A1 - S. Debnath A1 - K. R. Brown A1 - C. Monroe AB -

Quantum computers will eventually reach a size at which quantum error correction (QEC) becomes imperative. In order to make quantum information robust to errors introduced by qubit imperfections and flawed control operations, QEC protocols encode a logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent correction or detection of errors without destroying the logical state itself through direct measurement. While several experiments have shown a reduction of high intrinsic or artificially introduced errors in logical qubits, fault-tolerant encoding of a logical qubit has never been demonstrated. Here we show the encoding and syndrome measurement of a fault-tolerant logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates for the first time the robustness of a fault-tolerant qubit to imperfections in the very operations used to encode it. This advantage persists in the face of large added error rates and experimental calibration errors.

UR - https://arxiv.org/abs/1611.06946 ER - TY - JOUR T1 - Grover search and the no-signaling principle JF - Physical Review Letters Y1 - 2016 A1 - Ning Bao A1 - Adam Bouland A1 - Stephen P. Jordan AB -

From an information processing point of view, two of the key properties of quantum physics are the no-signaling principle and the Grover search lower bound. That is, despite admitting stronger-than-classical correlations, quantum mechanics does not imply superluminal signaling, and despite a form of exponential parallelism, quantum mechanics does not imply polynomial-time brute force solution of NP-complete problems. Here, we investigate the degree to which these two properties are connected. We examine four classes of deviations from quantum mechanics, for which we draw inspiration from the literature on the black hole information paradox: nonunitary dynamics, non-Born-rule measurement, cloning, and postselection. We find that each model admits superluminal signaling if and only if it admits a query complexity speedup over Grover's algorithm. Furthermore, we show that the physical resources required to send a superluminal signal scale polynomially with the resources needed to speed up Grover's algorithm. Hence, one can perform a physically reasonable experiment demonstrating superluminal signaling if and only if one can perform a reasonable experiment inducing a speedup over Grover's algorithm.

VL - 117 U4 - 120501 UR - http://arxiv.org/abs/1511.00657 ER - TY - JOUR T1 - Mapping constrained optimization problems to quantum annealing with application to fault diagnosis Y1 - 2016 A1 - Bian, Zhengbing A1 - Chudak, Fabian A1 - Israel, Robert A1 - Lackey, Brad A1 - Macready, William G A1 - Roy, Aidan AB - Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware. UR - http://arxiv.org/abs/1603.03111 ER - TY - JOUR T1 - Mapping contrained optimization problems to quantum annealing with application to fault diagnosis JF - Frontiers in ICT Y1 - 2016 A1 - Bian, Zhengbing A1 - Chudak, Fabian A1 - Robert Brian Israel A1 - Brad Lackey A1 - Macready, William G A1 - Aiden Roy AB -

Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping Boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular, we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. By contrast, global embedding techniques generate a hardware-independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of the D-Wave hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D- Wave’s QA hardware to circuit-based fault diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000 N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Furthermore, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.

VL - 3 U4 - 14 UR - http://journal.frontiersin.org/article/10.3389/fict.2016.00014/full ER - TY - JOUR T1 - Multiple scattering dynamics of fermions at an isolated p-wave resonance JF - Nature Communications Y1 - 2016 A1 - Ryan Thomas A1 - Kris O. Roberts A1 - Eite Tiesinga A1 - Andrew C.J. Wade A1 - P. Blair Blakie A1 - Amita B. Deb A1 - Niels Kjærgaard AB -

The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions this requirement strictly prohibits scattering into 90 degree angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90 yield. Above this threshold effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, while the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.

VL - 7 U4 - 12069 UR - http://www.nature.com/articles/ncomms12069 U5 - 10.1038/ncomms12069 ER - TY - JOUR T1 - Photoassociation of spin polarized Chromium JF - Physical Review A Y1 - 2016 A1 - Jahn Rührig A1 - Tobias Bäuerle A1 - Paul S. Julienne A1 - Eite Tiesinga A1 - Tilman Pfau AB - We report the homonuclear photoassociation (PA) of ultracold 52Cr atoms in an optical dipole trap. This constitutes the first measurement of PA in an element with total electron spin S~>1. Although Cr, with its 7S3 ground and 7P4,3,2 excited states, is expected to have a complicated PA spectrum we show that a spin polarized cloud exhibits a remarkably simple PA spectrum when circularly polarized light is applied. Over a scan range of 20 GHz below the 7P3 asymptote we observe two distinct vibrational series each following a LeRoy-Bernstein law for a C3/R3 potential with excellent agreement. We determine the C3 coefficients of the Hund's case c) relativistic adiabatic potentials to be -1.83±0.02 a.u. and -1.46±0.01a.u.. Theoretical non-rotating Movre-Pichler calculations enable a first assignment of the series to Ω=6u and 5g potential energy curves. In a different set of experiments we disturb the selection rules by a transverse magnetic field which leads to additional PA series. VL - 93 U4 - 021406 UR - http://arxiv.org/abs/1512.04378 CP - 2 U5 - 10.1103/PhysRevA.93.021406 ER - TY - JOUR T1 - Quantum-Enhanced Machine Learning JF - Physical Review Letters Y1 - 2016 A1 - Dunjko, Vedran A1 - J. M. Taylor A1 - Briegel, Hans J. AB -

The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

VL - 117 U4 - 130501 UR - http://link.aps.org/doi/10.1103/PhysRevLett.117.130501 CP - 13 U5 - 10.1103/PhysRevLett.117.130501 ER - TY - JOUR T1 - A quasi-mode theory of chiral phonons Y1 - 2016 A1 - Xunnong Xu A1 - Seunghwi Kim A1 - Gaurav Bahl A1 - J. M. Taylor AB -

The coherence properties of mechanical resonators are often limited by multiple unavoidable forms of loss -- including phonon-phonon and phonon-defect scattering -- which result in the scattering of sound into other resonant modes and into the phonon bath. Dynamic suppression of this scattering loss can lift constraints on device structure and can improve tolerance to defects in the material, even after fabrication. Inspired by recent experiments, here we introduce a model of phonon losses resulting from disorder in a whispering gallery mode resonator with acousto-optical coupling between optical and mechanical modes. We show that a typical elastic scattering mechanism of high quality factor (Q) mechanical modes flips the direction of phonon propagation via high-angle scattering, leading to damping into modes with the opposite parity. When the optical mode overlaps co-propagating high-Q and bulk mechanical modes, the addition of laser cooling via sideband-resolved damping of the mechanical mode of a chosen parity also damps and modifies the response of the bulk modes of the same parity. This, in turn, simultaneously improves the quality factor and reduces the thermal load of the counter-propagating high-Q modes, leading to the dynamical creation of a cold phononic shield. We compare our theoretical results to the recent experiments of Kim et al., and find quantitative agreement with our theory.

UR - https://arxiv.org/abs/1612.09240 ER - TY - JOUR T1 - Realizing Exactly Solvable SU(N) Magnets with Thermal Atoms JF - Physical Review A Y1 - 2016 A1 - Michael E. Beverland A1 - Gorjan Alagic A1 - Michael J. Martin A1 - Andrew P. Koller A1 - Ana M. Rey A1 - Alexey V. Gorshkov AB -

We show that n thermal fermionic alkaline-earth-metal atoms in a flat-bottom trap allow one to robustly implement a spin model displaying two symmetries: the Sn symmetry that permutes atoms occupying different vibrational levels of the trap and the SU(N) symmetry associated with N nuclear spin states. The symmetries make the model exactly solvable, which, in turn, enables the analytic study of dynamical processes such as spin diffusion in this SU(N) system. We also show how to use this system to generate entangled states that allow for Heisenberg-limited metrology. This highly symmetric spin model should be experimentally realizable even when the vibrational levels are occupied according to a high-temperature thermal or an arbitrary nonthermal distribution.

VL - 93 UR - http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.051601 CP - 5 U5 - 10.1103/PhysRevA.93.051601 ER - TY - JOUR T1 - Tomography is necessary for universal entanglement detection with single-copy observables JF - Physical Review Letters Y1 - 2016 A1 - Dawei Lu A1 - Tao Xin A1 - Nengkun Yu A1 - Zhengfeng Ji A1 - Jianxin Chen A1 - Guilu Long A1 - Jonathan Baugh A1 - Xinhua Peng A1 - Bei Zeng A1 - Raymond Laflamme AB - Entanglement, one of the central mysteries of quantum mechanics, plays an essential role in numerous applications of quantum information theory. A natural question of both theoretical and experimental importance is whether universal entanglement detection is possible without full state tomography. In this work, we prove a no-go theorem that rules out this possibility for any non-adaptive schemes that employ single-copy measurements only. We also examine in detail a previously implemented experiment, which claimed to detect entanglement of two-qubit states via adaptive single-copy measurements without full state tomography. By performing the experiment and analyzing the data, we demonstrate that the information gathered is indeed sufficient to reconstruct the state. These results reveal a fundamental limit for single-copy measurements in entanglement detection, and provides a general framework to study the detection of other interesting properties of quantum states, such as the positivity of partial transpose and the k-symmetric extendibility. VL - 116 U4 - 230501 UR - http://arxiv.org/abs/1511.00581 CP - 23 U5 - 10.1103/PhysRevLett.116.230501 ER - TY - JOUR T1 - Whose Information? Information About What? JF - Quantum [Un]Speakables II: 50 Years of Bell’s Theorem Y1 - 2016 A1 - Jeffrey Bub A1 - Anton Zeilinger A1 - Reinhold Bertlmann ER - TY - JOUR T1 - 2D Superexchange mediated magnetization dynamics in an optical lattice JF - Science Y1 - 2015 A1 - R. C. Brown A1 - R. Wyllie A1 - S. B. Koller A1 - E. A. Goldschmidt A1 - Michael Foss-Feig A1 - J. V. Porto AB - The competition of magnetic exchange interactions and tunneling underlies many complex quantum phenomena observed in real materials. We study non-equilibrium magnetization dynamics in an extended 2D system by loading effective spin-1/2 bosons into a spin-dependent optical lattice, and we use the lattice to separately control the resonance conditions for tunneling and superexchange. After preparing a non-equilibrium anti-ferromagnetically ordered state, we observe relaxation dynamics governed by two well-separated rates, which scale with the underlying Hamiltonian parameters associated with superexchange and tunneling. Remarkably, with tunneling off-resonantly suppressed, we are able to observe superexchange dominated dynamics over two orders of magnitude in magnetic coupling strength, despite the presence of vacancies. In this regime, the measured timescales are in agreement with simple theoretical estimates, but the detailed dynamics of this 2D, strongly correlated, and far-from-equilibrium quantum system remain out of reach of current computational techniques. VL - 348 U4 - 540 - 544 UR - http://arxiv.org/abs/1411.7036v1 CP - 6234 J1 - Science U5 - 10.1126/science.aaa1385 ER - TY - JOUR T1 - Bilayer fractional quantum Hall states with ultracold dysprosium JF - Physical Review A Y1 - 2015 A1 - Norman Y. Yao A1 - Steven D. Bennett A1 - Chris R. Laumann A1 - Benjamin L. Lev A1 - Alexey V. Gorshkov AB - We show how dipolar interactions between dysprosium atoms in an optical lattice can be used to obtain fractional quantum Hall states. In our approach, dysprosium atoms are trapped one atom per site in a deep optical lattice with negligible tunneling. Microwave and spatially dependent optical dressing fields are used to define an effective spin-1/2 or spin-1 degree of freedom in each atom. Thinking of spin-1/2 particles as hardcore bosons, dipole-dipole interactions give rise to boson hopping, topological flat bands with Chern number 1, and the \nu = 1/2 Laughlin state. Thinking of spin-1 particles as two-component hardcore bosons, dipole-dipole interactions again give rise to boson hopping, topological flat bands with Chern number 2, and the bilayer Halperin (2,2,1) state. By adjusting the optical fields, we find a phase diagram, in which the (2,2,1) state competes with superfluidity. Generalizations to solid-state magnetic dipoles are discussed. VL - 92 U4 - 033609 UR - http://arxiv.org/abs/1505.03099v1 CP - 3 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.92.033609 ER - TY - JOUR T1 - Coulomb bound states of strongly interacting photons JF - Physical Review Letters Y1 - 2015 A1 - Mohammad F. Maghrebi A1 - Michael Gullans A1 - P. Bienias A1 - S. Choi A1 - I. Martin A1 - O. Firstenberg A1 - M. D. Lukin A1 - H. P. Büchler A1 - Alexey V. Gorshkov AB - We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms. VL - 115 U4 - 123601 UR - http://arxiv.org/abs/1505.03859v1 CP - 12 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.115.123601 ER - TY - JOUR T1 - Framework for learning agents in quantum environments Y1 - 2015 A1 - Vedran Dunjko A1 - J. M. Taylor A1 - Hans J. Briegel AB - In this paper we provide a broad framework for describing learning agents in general quantum environments. We analyze the types of classically specified environments which allow for quantum enhancements in learning, by contrasting environments to quantum oracles. We show that whether or not quantum improvements are at all possible depends on the internal structure of the quantum environment. If the environments are constructed and the internal structure is appropriately chosen, or if the agent has limited capacities to influence the internal states of the environment, we show that improvements in learning times are possible in a broad range of scenarios. Such scenarios we call luck-favoring settings. The case of constructed environments is particularly relevant for the class of model-based learning agents, where our results imply a near-generic improvement. UR - http://arxiv.org/abs/1507.08482v1 ER - TY - JOUR T1 - Hamiltonian simulation with nearly optimal dependence on all parameters JF - Proceedings of the 56th IEEE Symposium on Foundations of Computer Science Y1 - 2015 A1 - Dominic W. Berry A1 - Andrew M. Childs A1 - Robin Kothari AB - We present an algorithm for sparse Hamiltonian simulation that has optimal dependence on all parameters of interest (up to log factors). Previous algorithms had optimal or near-optimal scaling in some parameters at the cost of poor scaling in others. Hamiltonian simulation via a quantum walk has optimal dependence on the sparsity $d$ at the expense of poor scaling in the allowed error $\epsilon$. In contrast, an approach based on fractional-query simulation provides optimal scaling in $\epsilon$ at the expense of poor scaling in $d$. Here we combine the two approaches, achieving the best features of both. By implementing a linear combination of quantum walk steps with coefficients given by Bessel functions, our algorithm achieves near-linear scaling in $\tau := d \|H\|_{\max} t$ and sublogarithmic scaling in $1/\epsilon$. Our dependence on $\epsilon$ is optimal, and we prove a new lower bound showing that no algorithm can have sublinear dependence on $\tau$. U4 - 792-809 UR - http://arxiv.org/abs/1501.01715 U5 - 10.1109/FOCS.2015.54 ER - TY - JOUR T1 - The Measurement Problem from the Perspective of an Information Theoretic Interpretation of Quantum Mechanics JF - Entropy Y1 - 2015 A1 - Jeffrey Bub AB - The aim of this paper is to consider the consequences of an information-theoretic interpretation of quantum mechanics for the measurement problem. The motivating idea of the interpretation is that the relation between quantum mechanics and the structure of information is analogous to the relation between special relativity and the structure of space-time. Insofar as quantum mechanics deals with a class of probabilistic correlations that includes correlations structurally different from classical correlations, the theory is about the structure of information: the possibilities for representing, manipulating, and communicating information in a genuinely indeterministic quantum world in which measurement outcomes are intrinsically random are different than we thought. Part of the measurement problem is deflated as a pseudo-problem on this view, and the theory has the resources to deal with the remaining part, given certain idealizations in the treatment of macrosystems. VL - 17 U4 - 7374-7386 UR - http://www.mdpi.com/1099-4300/17/11/7374 CP - 11 U5 - 10.3390/e17117374 ER - TY - JOUR T1 - Quantum Entanglement and Information JF - The Stanford Encyclopedia of Philosophy Y1 - 2015 A1 - Jeffrey Bub A1 - Edward N. Zalta AB - Quantum entanglement is a physical resource, like energy, associated with the peculiar nonclassical correlations that are possible between separated quantum systems. Entanglement can be measured, transformed, and purified. A pair of quantum systems in an entangled state can be used as a quantum information channel to perform computational and cryptographic tasks that are impossible for classical systems. The general study of the information-processing capabilities of quantum systems is the subject of quantum information theory. UR - http://plato.stanford.edu/archives/sum2015/entries/qt-entangle/ ER - TY - JOUR T1 - Simulating Hamiltonian dynamics with a truncated Taylor series JF - Physical Review Letters Y1 - 2015 A1 - Dominic W. Berry A1 - Andrew M. Childs A1 - Richard Cleve A1 - Robin Kothari A1 - Rolando D. Somma AB - We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations to directly apply the truncated Taylor series. VL - 114 U4 - 090502 UR - http://arxiv.org/abs/1412.4687v1 CP - 9 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.114.090502 ER - TY - JOUR T1 - Beyond the spin model approximation for Ramsey spectroscopy JF - Phys. Rev. Lett. Y1 - 2014 A1 - A P Koller A1 - M Beverland A1 - Alexey V. Gorshkov A1 - A M Rey VL - 112 U4 - 123001 UR - http://link.aps.org/doi/10.1103/PhysRevLett.112.123001 ER - TY - JOUR T1 - Classical simulation of Yang-Baxter gates JF - 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014) Y1 - 2014 A1 - Gorjan Alagic A1 - Aniruddha Bapat A1 - Stephen P. Jordan AB - A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group B n for every $n \ge 2$. If we view such an operator as a quantum-computational gate, then topological braiding corresponds to a quantum circuit. A basic question is when such a representation affords universal quantum computation. In this work, we show how to classically simulate these circuits when the gate in question belongs to certain families of solutions to the Yang-Baxter equation. These include all of the qubit (i.e., $d = 2$) solutions, and some simple families that include solutions for arbitrary $d \ge 2$. Our main tool is a probabilistic classical algorithm for efficient simulation of a more general class of quantum circuits. This algorithm may be of use outside the present setting. VL - 27 U4 - 161-175 UR - http://arxiv.org/abs/1407.1361v1 J1 - 9th Conference on the Theory of Quantum Computation U5 - 10.4230/LIPIcs.TQC.2014.161 ER - TY - JOUR T1 - The computational power of matchgates and the XY interaction on arbitrary graphs JF - Quantum Information and Computation Y1 - 2014 A1 - Daniel J. Brod A1 - Andrew M. Childs AB - Matchgates are a restricted set of two-qubit gates known to be classically simulable when acting on nearest-neighbor qubits on a path, but universal for quantum computation when the qubits are arranged on certain other graphs. Here we characterize the power of matchgates acting on arbitrary graphs. Specifically, we show that they are universal on any connected graph other than a path or a cycle, and that they are classically simulable on a cycle. We also prove the same dichotomy for the XY interaction, a proper subset of matchgates related to some implementations of quantum computing. VL - 14 U4 - 901-916 UR - http://arxiv.org/abs/1308.1463v1 CP - 11-12 J1 - Quantum Information and Computation 14 ER - TY - JOUR T1 - The computational power of normalizer circuits over black-box groups Y1 - 2014 A1 - Juan Bermejo-Vega A1 - Cedric Yen-Yu Lin A1 - Maarten Van den Nest AB - This work presents a precise connection between Clifford circuits, Shor's factoring algorithm and several other famous quantum algorithms with exponential quantum speed-ups for solving Abelian hidden subgroup problems. We show that all these different forms of quantum computation belong to a common new restricted model of quantum operations that we call \emph{black-box normalizer circuits}. To define these, we extend the previous model of normalizer circuits [arXiv:1201.4867v1,arXiv:1210.3637,arXiv:1409.3208], which are built of quantum Fourier transforms, group automorphism and quadratic phase gates associated to an Abelian group $G$. In previous works, the group $G$ is always given in an explicitly decomposed form. In our model, we remove this assumption and allow $G$ to be a black-box group. While standard normalizer circuits were shown to be efficiently classically simulable [arXiv:1201.4867v1,arXiv:1210.3637,arXiv:1409.3208], we find that normalizer circuits are powerful enough to factorize and solve classically-hard problems in the black-box setting. We further set upper limits to their computational power by showing that decomposing finite Abelian groups is complete for the associated complexity class. In particular, solving this problem renders black-box normalizer circuits efficiently classically simulable by exploiting the generalized stabilizer formalism in [arXiv:1201.4867v1,arXiv:1210.3637,arXiv:1409.3208]. Lastly, we employ our connection to draw a few practical implications for quantum algorithm design: namely, we give a no-go theorem for finding new quantum algorithms with black-box normalizer circuits, a universality result for low-depth normalizer circuits, and identify two other complete problems. UR - http://arxiv.org/abs/1409.4800v1 ER - TY - JOUR T1 - Discrete optimization using quantum annealing on sparse Ising models JF - Frontiers in Physics Y1 - 2014 A1 - Bian, Zhengbing A1 - Chudak, Fabian A1 - Israel, Robert A1 - Brad Lackey A1 - Macready, William G A1 - Roy, Aidan AB - This paper discusses techniques for solving discrete optimization problems using quantum annealing. Practical issues likely to affect the computation include precision limitations, finite temperature, bounded energy range, sparse connectivity, and small numbers of qubits. To address these concerns we propose a way of finding energy representations with large classical gaps between ground and first excited states, efficient algorithms for mapping non-compatible Ising models into the hardware, and the use of decomposition methods for problems that are too large to fit in hardware. We validate the approach by describing experiments with D-Wave quantum hardware for low density parity check decoding with up to 1000 variables. PB - Frontiers VL - 2 U4 - 56 ER - TY - JOUR T1 - "Einstein and Bohr Meet Alice and Bob', Logic and Science Facing the New Technologies JF - Proceedings of the 14th Congress for Logic (Nancy), Logic, Methodology and Philosophy of Science Y1 - 2014 A1 - Jeffrey Bub A1 - Peter Schroeder-Heister A1 - Gerhard Heinzmann A1 - Wilfrid Hodges A1 - Pierre Edouard Bour ER - TY - JOUR T1 - Exponential improvement in precision for simulating sparse Hamiltonians JF - Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014) Y1 - 2014 A1 - Dominic W. Berry A1 - Andrew M. Childs A1 - Richard Cleve A1 - Robin Kothari A1 - Rolando D. Somma AB - We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an exponential improvement over previous methods. Specifically, we show that a $d$-sparse Hamiltonian $H$ acting on $n$ qubits can be simulated for time $t$ with precision $\epsilon$ using $O\big(\tau \frac{\log(\tau/\epsilon)}{\log\log(\tau/\epsilon)}\big)$ queries and $O\big(\tau \frac{\log^2(\tau/\epsilon)}{\log\log(\tau/\epsilon)}n\big)$ additional 2-qubit gates, where $\tau = d^2 \|{H}\|_{\max} t$. Unlike previous approaches based on product formulas, the query complexity is independent of the number of qubits acted on, and for time-varying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous- and fractional-query models using discrete quantum queries, showing that the former models are not much more powerful than the discrete model even for very small error. We also simplify the analysis of this conversion, avoiding the need for a complex fault correction procedure. Our simplification relies on a new form of "oblivious amplitude amplification" that can be applied even though the reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our algorithms are optimal as a function of the error. U4 - 283-292 SN - 978-1-4503-2710-7 UR - http://arxiv.org/abs/1312.1414v2 J1 - Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014) U5 - 10.1145/2591796.2591854 ER - TY - JOUR T1 - Normalizer circuits and a Gottesman-Knill theorem for infinite-dimensional systems Y1 - 2014 A1 - Juan Bermejo-Vega A1 - Cedric Yen-Yu Lin A1 - Maarten Van den Nest AB - $\textit{Normalizer circuits}$ [1,2] are generalized Clifford circuits that act on arbitrary finite-dimensional systems $\mathcal{H}_{d_1}\otimes ... \otimes \mathcal{H}_{d_n}$ with a standard basis labeled by the elements of a finite Abelian group $G=\mathbb{Z}_{d_1}\times... \times \mathbb{Z}_{d_n}$. Normalizer gates implement operations associated with the group $G$ and can be of three types: quantum Fourier transforms, group automorphism gates and quadratic phase gates. In this work, we extend the normalizer formalism [1,2] to infinite dimensions, by allowing normalizer gates to act on systems of the form $\mathcal{H}_\mathbb{Z}^{\otimes a}$: each factor $\mathcal{H}_\mathbb{Z}$ has a standard basis labeled by $\textit{integers}$ $\mathbb{Z}$, and a Fourier basis labeled by $\textit{angles}$, elements of the circle group $\mathbb{T}$. Normalizer circuits become hybrid quantum circuits acting both on continuous- and discrete-variable systems. We show that infinite-dimensional normalizer circuits can be efficiently simulated classically with a generalized $\textit{stabilizer formalism}$ for Hilbert spaces associated with groups of the form $\mathbb{Z}^a\times \mathbb{T}^b \times \mathbb{Z}_{d_1}\times...\times \mathbb{Z}_{d_n}$. We develop new techniques to track stabilizer-groups based on normal forms for group automorphisms and quadratic functions. We use our normal forms to reduce the problem of simulating normalizer circuits to that of finding general solutions of systems of mixed real-integer linear equations [3] and exploit this fact to devise a robust simulation algorithm: the latter remains efficient even in pathological cases where stabilizer groups become infinite, uncountable and non-compact. The techniques developed in this paper might find applications in the study of fault-tolerant quantum computation with superconducting qubits [4,5]. UR - http://arxiv.org/abs/1409.3208v2 ER - TY - JOUR T1 - Optical detection of radio waves through a nanomechanical transducer JF - Nature Y1 - 2014 A1 - T. Bagci A1 - A. Simonsen A1 - S. Schmid A1 - L. G. Villanueva A1 - E. Zeuthen A1 - J. Appel A1 - J. M. Taylor A1 - A. Sørensen A1 - K. Usami A1 - A. Schliesser A1 - E. S. Polzik AB - Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals to an optical carrier would allow transmitting them via optical fibers dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics has shown that nanomechanical oscillators can couple very strongly to either microwave or optical fields. An oscillator accommodating both functionalities would bear great promise as the intermediate platform in a radio-to-optical transduction cascade. Here, we demonstrate such an opto-electro-mechanical transducer utilizing a high-Q nanomembrane. A moderate voltage bias (<10V) is sufficient to induce strong coupling between the voltage fluctuations in a rf resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its metallized surface. The circuit acts as an antenna; the voltage signals it induces are detected as an optical phase shift with quantum-limited sensitivity. The half-wave voltage is in the microvolt range, orders of magnitude below that of standard optical modulators. The noise added by the membrane is suppressed by the electro-mechanical cooperativity C~6800 and has a temperature of 40mK, far below 300K where the entire device is operated. This corresponds to a sensitivity limit as low as 5 pV/Hz^1/2, or -210dBm/Hz in a narrow band around 1 MHz. Our work introduces an entirely new approach to all-optical, ultralow-noise detection of classical electronic signals, and sets the stage for coherent upconversion of low-frequency quantum signals to the optical domain. VL - 507 U4 - 81 - 85 UR - http://arxiv.org/abs/1307.3467v2 CP - 7490 J1 - Nature U5 - 10.1038/nature13029 ER - TY - JOUR T1 - Probing many-body interactions in an optical lattice clock JF - Ann. Phys. Y1 - 2014 A1 - Rey, A M A1 - Alexey V. Gorshkov A1 - Kraus, C V A1 - Martin, M J A1 - Bishof, M A1 - Swallows, M D A1 - Zhang, X A1 - Benko, C A1 - Ye, J A1 - Lemke, N D A1 - Ludlow, A D VL - 340 U4 - 311 UR - http://www.sciencedirect.com/science/article/pii/S0003491613002546 ER - TY - JOUR T1 - Quantum Correlations and the Measurement Problem JF - International Journal of Theoretical Physics Y1 - 2014 A1 - Jeffrey Bub AB - The transition from classical to quantum mechanics rests on the recognition that the structure of information is not what we thought it was: there are operational, i.e., phenomenal, probabilistic correlations that lie outside the polytope of local correlations. Such correlations cannot be simulated with classical resources, which generate classical correlations represented by the points in a simplex, where the vertices of the simplex represent joint deterministic states that are the common causes of the correlations. The `no go' hidden variable theorems tell us that we can't shoe-horn correlations outside the local polytope into a classical simplex by supposing that something has been left out of the story. The replacement of the classical simplex by the quantum convex set as the structure representing probabilistic correlations is the analogue for quantum mechanics of the replacement of Newton's Euclidean space and time by Minkowski spacetime in special relativity. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are generic features of correlations that lie outside the local correlation polytope. This paper is an elaboration of these ideas, and its consequences for the measurement problem of quantum mechanics. A large part of the difficulty is removed by seeing that the inconsistency in reconciling the entangled state at the end of a quantum measurement process with the definiteness of the macroscopic pointer reading and the definiteness of the correlated value of the measured micro-observable is only apparent and depends on a stipulation that is not required by the structure of the quantum possibility space. Replacing this stipulation by an alternative consistent stipulation resolves the problem. VL - 53 U4 - 3346 - 3369 UR - http://arxiv.org/abs/1210.6371v3 CP - 10 J1 - Int J Theor Phys U5 - 10.1007/s10773-013-1695-z ER - TY - JOUR T1 - Quantum Interactions with Closed Timelike Curves and Superluminal Signaling JF - Physical Review A Y1 - 2014 A1 - Jeffrey Bub A1 - Allen Stairs AB - There is now a significant body of results on quantum interactions with closed timelike curves (CTCs) in the quantum information literature, for both the Deutsch model of CTC interactions (D-CTCs) and the projective model (P-CTCs). As a consequence, there is a prima facie argument exploiting entanglement that CTC interactions would enable superluminal and, indeed, effectively instantaneous signaling. In cases of spacelike separation between the sender of a signal and the receiver, whether a receiver measures the local part of an entangled state or a disentangled state to access the signal can depend on the reference frame. We propose a consistency condition that gives priority to either an entangled perspective or a disentangled perspective in spacelike separated scenarios. For D-CTC interactions, the consistency condition gives priority to frames of reference in which the state is disentangled, while for P-CTC interactions the condition selects the entangled state. Using the consistency condition, we show that there is a procedure that allows Alice to signal to Bob in the past via relayed superluminal communications between spacelike separated Alice and Clio, and spacelike separated Clio and Bob. This opens the door to time travel paradoxes in the classical domain. Ralph (arXiv:1107.4675) first pointed this out for P-CTCs, but we show that Ralph's procedure for a 'radio to the past' is flawed. Since both D-CTCs and P-CTCs allow classical information to be sent around a spacetime loop, it follows from a result by Aaronson and Watrous (Proc.Roy.Soc.A, 465:631-647 (2009)) for CTC-enhanced classical computation that a quantum computer with access to P-CTCs would have the power of PSPACE, equivalent to a D-CTC-enhanced quantum computer. VL - 89 UR - http://arxiv.org/abs/1309.4751v4 CP - 2 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.89.022311 ER - TY - JOUR T1 - Scattering resonances and bound states for strongly interacting Rydberg polaritons JF - Physical Review A Y1 - 2014 A1 - P. Bienias A1 - S. Choi A1 - O. Firstenberg A1 - Mohammad F. Maghrebi A1 - Michael Gullans A1 - M. D. Lukin A1 - Alexey V. Gorshkov A1 - H. P. Büchler AB - We provide a theoretical framework describing slow-light polaritons interacting via atomic Rydberg states. We use a diagrammatic method to analytically derive the scattering properties of two polaritons. We identify parameter regimes where polariton-polariton interactions are repulsive. Furthermore, in the regime of attractive interactions, we identify multiple two-polariton bound states, calculate their dispersion, and study the resulting scattering resonances. Finally, the two-particle scattering properties allow us to derive the effective low-energy many-body Hamiltonian. This theoretical platform is applicable to ongoing experiments. VL - 90 UR - http://arxiv.org/abs/1402.7333v1 CP - 5 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.90.053804 ER - TY - JOUR T1 - All-Optical Switch and Transistor Gated by One Stored Photon JF - Science Y1 - 2013 A1 - Wenlan Chen A1 - Kristin M. Beck A1 - Robert Bücker A1 - Michael Gullans A1 - Mikhail D. Lukin A1 - Haruka Tanji-Suzuki A1 - Vladan Vuletic AB - The realization of an all-optical transistor where one 'gate' photon controls a 'source' light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical resonator, we realize a device in which one stored gate photon controls the resonator transmission of subsequently applied source photons. A weak gate pulse induces bimodal transmission distribution, corresponding to zero and one gate photons. One stored gate photon produces fivefold source attenuation, and can be retrieved from the atomic ensemble after switching more than one source photon. Without retrieval, one stored gate photon can switch several hundred source photons. With improved storage and retrieval efficiency, our work may enable various new applications, including photonic quantum gates, and deterministic multiphoton entanglement. VL - 341 U4 - 768 - 770 UR - http://arxiv.org/abs/1401.3194v1 CP - 6147 J1 - Science U5 - 10.1126/science.1238169 ER - TY - JOUR T1 - Controllable quantum spin glasses with magnetic impurities embedded in quantum solids JF - Physical Review B Y1 - 2013 A1 - Mikhail Lemeshko A1 - Norman Y. Yao A1 - Alexey V. Gorshkov A1 - Hendrik Weimer A1 - Steven D. Bennett A1 - Takamasa Momose A1 - Sarang Gopalakrishnan AB - Magnetic impurities embedded in inert solids can exhibit long coherence times and interact with one another via their intrinsic anisotropic dipolar interaction. We argue that, as a consequence of these properties, disordered ensembles of magnetic impurities provide an effective platform for realizing a controllable, tunable version of the dipolar quantum spin glass seen in LiHo$_x$Y$_{1-x}$F$_4$. Specifically, we propose and analyze a system composed of dysprosium atoms embedded in solid helium. We describe the phase diagram of the system and discuss the realizability and detectability of the quantum spin glass and antiglass phases. VL - 88 UR - http://arxiv.org/abs/1307.1130v1 CP - 1 J1 - Phys. Rev. B U5 - 10.1103/PhysRevB.88.014426 ER - TY - JOUR T1 - Dynamical quantum correlations of Ising models on an arbitrary lattice and their resilience to decoherence JF - New Journal of Physics Y1 - 2013 A1 - Michael Foss-Feig A1 - Kaden R A Hazzard A1 - John J Bollinger A1 - Ana Maria Rey A1 - Charles W Clark AB - Ising models, and the physical systems described by them, play a central role in generating entangled states for use in quantum metrology and quantum information. In particular, ultracold atomic gases, trapped ion systems, and Rydberg atoms realize long-ranged Ising models, which even in the absence of a transverse field can give rise to highly non-classical dynamics and long-range quantum correlations. In the first part of this paper, we present a detailed theoretical framework for studying the dynamics of such systems driven (at time t=0) into arbitrary unentangled non-equilibrium states, thus greatly extending and unifying the work of Ref. [1]. Specifically, we derive exact expressions for closed-time-path ordered correlation functions, and use these to study experimentally relevant observables, e.g. Bloch vector and spin-squeezing dynamics. In the second part, these correlation functions are then used to derive closed-form expressions for the dynamics of arbitrary spin-spin correlation functions in the presence of both T_1 (spontaneous spin relaxation/excitation) and T_2 (dephasing) type decoherence processes. Even though the decoherence is local, our solution reveals that the competition between Ising dynamics and T_1 decoherence gives rise to an emergent non-local dephasing effect, thereby drastically amplifying the degradation of quantum correlations. In addition to identifying the mechanism of this deleterious effect, our solution points toward a scheme to eliminate it via measurement-based coherent feedback. VL - 15 U4 - 113008 UR - http://arxiv.org/abs/1306.0172v1 CP - 11 J1 - New J. Phys. U5 - 10.1088/1367-2630/15/11/113008 ER - TY - JOUR T1 - Non-equilibrium dynamics of Ising models with decoherence: an exact solution JF - Physical Review A Y1 - 2013 A1 - Michael Foss-Feig A1 - Kaden R. A. Hazzard A1 - John J. Bollinger A1 - Ana Maria Rey AB - The interplay between interactions and decoherence in many-body systems is of fundamental importance in quantum physics: Decoherence can degrade correlations, but can also give rise to a variety of rich dynamical and steady-state behaviors. We obtain an exact analytic solution for the non-equilibrium dynamics of Ising models with arbitrary interactions and subject to the most general form of local Markovian decoherence. Our solution shows that decoherence affects the relaxation of observables more than predicted by single-particle considerations. It also reveals a dynamical phase transition, specifically a Hopf bifurcation, which is absent at the single-particle level. These calculations are applicable to ongoing quantum information and emulation efforts using a variety of atomic, molecular, optical, and solid-state systems. VL - 87 UR - http://arxiv.org/abs/1209.5795v2 CP - 4 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.87.042101 ER - TY - JOUR T1 - Quantum Logic between Remote Quantum Registers JF - Physical Review A Y1 - 2013 A1 - Norman Y. Yao A1 - Zhe-Xuan Gong A1 - Chris R. Laumann A1 - Steven D. Bennett A1 - L. -M. Duan A1 - Mikhail D. Lukin A1 - Liang Jiang A1 - Alexey V. Gorshkov AB - We analyze two approaches to quantum state transfer in solid-state spin systems. First, we consider unpolarized spin-chains and extend previous analysis to various experimentally relevant imperfections, including quenched disorder, dynamical decoherence, and uncompensated long range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing which exploits all of the spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate "dark" spin qubits significantly raise the error threshold for robust operation. Finally, as an example, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated Nitrogen-Vacancy registers in diamond; numerical simulations confirm that high fidelity gates are achievable even in the presence of moderate disorder. VL - 87 UR - http://arxiv.org/abs/1206.0014v1 CP - 2 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.87.022306 ER - TY - JOUR T1 - A quantum many-body spin system in an optical lattice clock JF - Science Y1 - 2013 A1 - M J Martin A1 - Bishof, M A1 - Swallows, M D A1 - X Zhang A1 - C Benko A1 - J von-Stecher A1 - Alexey V. Gorshkov A1 - Rey, A M A1 - Jun Ye VL - 341 U4 - 632 UR - http://www.sciencemag.org/content/341/6146/632.abstract ER - TY - JOUR T1 - The Resonant Exchange Qubit JF - Physical Review Letters Y1 - 2013 A1 - J. Medford A1 - J. Beil A1 - J. M. Taylor A1 - E. I. Rashba A1 - H. Lu A1 - A. C. Gossard A1 - C. M. Marcus AB - We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A {\pi}/2-gate time of 2.5 ns and a coherence time of 19 {\mu}s, using multi-pulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment. VL - 111 UR - http://arxiv.org/abs/1304.3413v2 CP - 5 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.111.050501 ER - TY - JOUR T1 - Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit JF - Nature Nanotechnology Y1 - 2013 A1 - J. Medford A1 - J. Beil A1 - J. M. Taylor A1 - S. D. Bartlett A1 - A. C. Doherty A1 - E. I. Rashba A1 - D. P. DiVincenzo A1 - H. Lu A1 - A. C. Gossard A1 - C. M. Marcus AB - We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes. VL - 8 U4 - 654 - 659 UR - http://arxiv.org/abs/1302.1933v1 CP - 9 J1 - Nature Nanotech U5 - 10.1038/nnano.2013.168 ER - TY - JOUR T1 - Spinor dynamics in an antiferromagnetic spin-1 thermal Bose gas JF - Physical Review Letters Y1 - 2013 A1 - Hyewon K. Pechkis A1 - Jonathan P. Wrubel A1 - Arne Schwettmann A1 - Paul F. Griffin A1 - Ryan Barnett A1 - Eite Tiesinga A1 - Paul D. Lett AB - We present experimental observations of coherent spin-population oscillations in a cold thermal, Bose gas of spin-1 sodium-23 atoms. The population oscillations in a multi-spatial-mode thermal gas have the same behavior as those observed in a single-spatial-mode antiferromagnetic spinor Bose Einstein condensate. We demonstrate this by showing that the two situations are described by the same dynamical equations, with a factor of two change in the spin-dependent interaction coefficient, which results from the change to particles with distinguishable momentum states in the thermal gas. We compare this theory to the measured spin population evolution after times up to a few hundreds of ms, finding quantitative agreement with the amplitude and period. We also measure the damping time of the oscillations as a function of magnetic field. VL - 111 UR - http://arxiv.org/abs/1306.4255v1 CP - 2 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.111.025301 ER - TY - JOUR T1 - Symmetries of Codeword Stabilized Quantum Codes JF - 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013) Y1 - 2013 A1 - Salman Beigi A1 - Jianxin Chen A1 - Markus Grassl A1 - Zhengfeng Ji A1 - Qiang Wang A1 - Bei Zeng AB - Symmetry is at the heart of coding theory. Codes with symmetry, especially cyclic codes, play an essential role in both theory and practical applications of classical error-correcting codes. Here we examine symmetry properties for codeword stabilized (CWS) quantum codes, which is the most general framework for constructing quantum error-correcting codes known to date. A CWS code Q can be represented by a self-dual additive code S and a classical code C, i.,e., Q=(S,C), however this representation is in general not unique. We show that for any CWS code Q with certain permutation symmetry, one can always find a self-dual additive code S with the same permutation symmetry as Q such that Q=(S,C). As many good CWS codes have been found by starting from a chosen S, this ensures that when trying to find CWS codes with certain permutation symmetry, the choice of S with the same symmetry will suffice. A key step for this result is a new canonical representation for CWS codes, which is given in terms of a unique decomposition as union stabilizer codes. For CWS codes, so far mainly the standard form (G,C) has been considered, where G is a graph state. We analyze the symmetry of the corresponding graph of G, which in general cannot possess the same permutation symmetry as Q. We show that it is indeed the case for the toric code on a square lattice with translational symmetry, even if its encoding graph can be chosen to be translational invariant. VL - 22 U4 - 192-206 UR - http://arxiv.org/abs/1303.7020v2 U5 - 10.4230/LIPIcs.TQC.2013.192 ER - TY - JOUR T1 - Testing quantum expanders is co-QMA-complete JF - Physical Review A Y1 - 2013 A1 - Adam D. Bookatz A1 - Stephen P. Jordan A1 - Yi-Kai Liu A1 - Pawel Wocjan AB - A quantum expander is a unital quantum channel that is rapidly mixing, has only a few Kraus operators, and can be implemented efficiently on a quantum computer. We consider the problem of estimating the mixing time (i.e., the spectral gap) of a quantum expander. We show that this problem is co-QMA-complete. This has applications to testing randomized constructions of quantum expanders, and studying thermalization of open quantum systems. VL - 87 UR - http://arxiv.org/abs/1210.0787v2 CP - 4 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.87.042317 ER - TY - JOUR T1 - Non-Recursively Constructible Recursive Families of Graphs JF - The Electronic Journal of Combinatorics Y1 - 2012 A1 - Colleen Bouey A1 - Christina Graves A1 - Aaron Ostrander A1 - Gregory Palma AB - In a publication by Noy and Ribó, it was shown that recursively constructible families of graphs are recursive. The authors also conjecture that the converse holds; that is, recursive families are also recursively constructible. In this paper, we provide two specific counterexamples to this conjecture, which we then extend to an infinite family of counterexamples. VL - 19 UR - http://www.combinatorics.org/ojs/index.php/eljc/article/view/2211 CP - 2 ER - TY - JOUR T1 - Quantum Algorithms for Invariants of Triangulated Manifolds JF - Quantum Info. Comput. Vol. Y1 - 2012 A1 - Gorjan Alagic A1 - E. A. Bering AB -

One of the apparent advantages of quantum computers over their classical counterparts is their ability to efficiently contract tensor networks. In this article, we study some implications of this fact in the case of topological tensor networks. The graph underlying these networks is given by the triangulation of a manifold, and the structure of the tensors ensures that the overall tensor is independent of the choice of internal triangulation. This leads to quantum algorithms for additively approximating certain invariants of triangulated manifolds. We discuss the details of this construction in two specific cases. In the first case, we consider triangulated surfaces, where the triangle tensor is defined by the multiplication operator of a finite group; the resulting invariant has a simple closed-form expression involving the dimensions of the irreducible representations of the group and the Euler characteristic of the surface. In the second case, we consider triangulated 3-manifolds, where the tetrahedral tensor is defined by the so-called Fibonacci anyon model; the resulting invariant is the well-known Turaev-Viro invariant of 3-manifolds.

VL - 12 U4 - 843-863 UR - http://dl.acm.org/citation.cfm?id=2481580.2481588 CP - 9-10 ER - TY - JOUR T1 - Topological Flat Bands from Dipolar Spin Systems JF - Physical Review Letters Y1 - 2012 A1 - Norman Y. Yao A1 - Chris R. Laumann A1 - Alexey V. Gorshkov A1 - Steven D. Bennett A1 - Eugene Demler A1 - Peter Zoller A1 - Mikhail D. Lukin AB - We propose and analyze a physical system that naturally admits two-dimensional topological nearly flat bands. Our approach utilizes an array of three-level dipoles (effective S = 1 spins) driven by inhomogeneous electromagnetic fields. The dipolar interactions produce arbitrary uniform background gauge fields for an effective collection of conserved hardcore bosons, namely, the dressed spin-flips. These gauge fields result in topological band structures, whose bandgap can be larger than the corresponding bandwidth. Exact diagonalization of the full interacting Hamiltonian at half-filling reveals the existence of superfluid, crystalline, and supersolid phases. An experimental realization using either ultra-cold polar molecules or spins in the solid state is considered. VL - 109 UR - http://arxiv.org/abs/1207.4479v3 CP - 26 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.109.266804 ER - TY - JOUR T1 - Why the Tsirelson bound? JF - The Probable and the Improbable: The Meaning and Role of Probability in Physics Y1 - 2012 A1 - Jeffrey Bub AB - Wheeler's question 'why the quantum' has two aspects: why is the world quantum and not classical, and why is it quantum rather than superquantum, i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable answer to this question proposed by Pawlowski et al (2009), who provide an information-theoretic derivation of the Tsirelson bound from a principle they call 'information causality.' U4 - 167-185 UR - http://arxiv.org/abs/1208.3744v1 J1 - Published in Meir Hemmo and Yemima Ben-Menahem (eds.) U5 - 10.1007/978-3-642-21329-8_11 ER - TY - JOUR T1 - Chern numbers hiding in time-of-flight images JF - Physical Review A Y1 - 2011 A1 - Erhai Zhao A1 - Noah Bray-Ali A1 - Carl J. Williams A1 - I. B. Spielman A1 - Indubala I. Satija AB - We present a technique for detecting topological invariants -- Chern numbers -- from time-of-flight images of ultra-cold atoms. We show that the Chern numbers of integer quantum Hall states of lattice fermions leave their fingerprints in the atoms' momentum distribution. We analytically demonstrate that the number of local maxima in the momentum distribution is equal to the Chern number in two limiting cases, for large hopping anisotropy and in the continuum limit. In addition, our numerical simulations beyond these two limits show that these local maxima persist for a range of parameters. Thus, an everyday observable in cold atom experiments can serve as a useful tool to characterize and visualize quantum states with non-trivial topology. VL - 84 UR - http://arxiv.org/abs/1105.3100v3 CP - 6 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.84.063629 ER - TY - JOUR T1 - Fast and robust quantum computation with ionic Wigner crystals JF - Physical Review A Y1 - 2011 A1 - J. D. Baltrusch A1 - A. Negretti A1 - J. M. Taylor A1 - T. Calarco AB - We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze for the first time the situation in which the cyclotron (w_c) and the crystal rotation (w_r) frequencies do not fulfill the condition w_c=2w_r. It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme. VL - 83 UR - http://arxiv.org/abs/1011.5616v2 CP - 4 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.83.042319 ER - TY - JOUR T1 - Resolved atomic interaction sidebands in an optical clock transition JF - Physical Review Letters Y1 - 2011 A1 - Michael Bishof A1 - Yige Lin A1 - Matthew D. Swallows A1 - Alexey V. Gorshkov A1 - Jun Ye A1 - Ana Maria Rey AB - We report the observation of resolved atomic interaction sidebands (ISB) in the ${}^{87}$Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional (2D) optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts in [1]. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and usable as powerful spectroscopic tools in strongly interacting alkaline-earth gases. VL - 106 UR - http://arxiv.org/abs/1102.1016v2 CP - 25 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.106.250801 ER - TY - JOUR T1 - Spatial separation in a thermal mixture of ultracold $^174$Yb and $^87$Rb atoms JF - Physical Review A Y1 - 2011 A1 - Florian Baumer A1 - Frank Münchow A1 - Axel Görlitz A1 - Stephen E. Maxwell A1 - Paul S. Julienne A1 - Eite Tiesinga AB - We report on the observation of unusually strong interactions in a thermal mixture of ultracold atoms which cause a significant modification of the spatial distribution. A mixture of $^{87}$Rb and $^{174}$Yb with a temperature of a few $\mu$K is prepared in a hybrid trap consisting of a bichromatic optical potential superimposed on a magnetic trap. For suitable trap parameters and temperatures, a spatial separation of the two species is observed. We infer that the separation is driven by a large interaction strength between $^{174}$Yb and $^{87}$Rb accompanied by a large three-body recombination rate. Based on this assumption we have developed a diffusion model which reproduces our observations. VL - 83 UR - http://arxiv.org/abs/1104.1722v1 CP - 4 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.83.040702 ER - TY - JOUR T1 - Superradiance of cold atoms coupled to a superconducting circuit JF - Physical Review A Y1 - 2011 A1 - Daniel Braun A1 - Jonathan Hoffman A1 - Eite Tiesinga AB - We investigate superradiance of an ensemble of atoms coupled to an integrated superconducting LC-circuit. Particular attention is paid to the effect of inhomogeneous coupling constants. Combining perturbation theory in the inhomogeneity and numerical simulations we show that inhomogeneous coupling constants can significantly affect the superradiant relaxation process. Incomplete relaxation terminating in "dark states" can occur, from which the only escape is through individual spontaneous emission on a much longer time scale. The relaxation dynamics can be significantly accelerated or retarded, depending on the distribution of the coupling constants. On the technical side, we also generalize the previously known propagator of superradiance for identical couplings in the completely symmetric sector to the full exponentially large Hilbert space. VL - 83 UR - http://arxiv.org/abs/1101.5300v1 CP - 6 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.83.062305 ER - TY - JOUR T1 - Contextuality in Quantum Mechanics: Testing the Klyachko Inequality Y1 - 2010 A1 - Jeffrey Bub A1 - Allen Stairs AB - The Klyachko inequality is an inequality for the probabiities of the values of five observables of a spin-1 particle, which is satisfied by any noncontextual assignment of values to this set of observables, but is violated by the probabilities defined by a certain quantum state. We describe an experiment between two entangled spin-1 particles to test contextuality via a related inequality. We point out that a test of contextuality by measurements on a single particle to confirm the Klyachko inequality requires an assumption of non-disturbance by the measuring instrument, which is avoided in the two-particle experiment. UR - http://arxiv.org/abs/1006.0500v2 ER - TY - JOUR T1 - Dynamic Nuclear Polarization in Double Quantum Dots JF - Physical Review Letters Y1 - 2010 A1 - Michael Gullans A1 - J. J. Krich A1 - J. M. Taylor A1 - H. Bluhm A1 - B. I. Halperin A1 - C. M. Marcus A1 - M. Stopa A1 - A. Yacoby A1 - M. D. Lukin AB - We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called "dark states," and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process. VL - 104 UR - http://arxiv.org/abs/1003.4508v2 CP - 22 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.104.226807 ER - TY - JOUR T1 - Efficient quantum state tomography JF - Nature Communications Y1 - 2010 A1 - Marcus Cramer A1 - Martin B. Plenio A1 - Steven T. Flammia A1 - David Gross A1 - Stephen D. Bartlett A1 - Rolando Somma A1 - Olivier Landon-Cardinal A1 - Yi-Kai Liu A1 - David Poulin AB - Quantum state tomography, the ability to deduce the state of a quantum system from measured data, is the gold standard for verification and benchmarking of quantum devices. It has been realized in systems with few components, but for larger systems it becomes infeasible because the number of quantum measurements and the amount of computation required to process them grows exponentially in the system size. Here we show that we can do exponentially better than direct state tomography for a wide range of quantum states, in particular those that are well approximated by a matrix product state ansatz. We present two schemes for tomography in 1-D quantum systems and touch on generalizations. One scheme requires unitary operations on a constant number of subsystems, while the other requires only local measurements together with more elaborate post-processing. Both schemes rely only on a linear number of experimental operations and classical postprocessing that is polynomial in the system size. A further strength of the methods is that the accuracy of the reconstructed states can be rigorously certified without any a priori assumptions. VL - 1 U4 - 149 UR - http://arxiv.org/abs/1101.4366v1 CP - 9 J1 - Nat Comms U5 - 10.1038/ncomms1147 ER - TY - JOUR T1 - Fast Entanglement Distribution with Atomic Ensembles and Fluorescent Detection JF - Physical Review A Y1 - 2010 A1 - Jonatan B. Brask A1 - Liang Jiang A1 - Alexey V. Gorshkov A1 - Vladan Vuletic A1 - Anders S. Sorensen A1 - Mikhail D. Lukin AB - Quantum repeaters based on atomic ensemble quantum memories are promising candidates for achieving scalable distribution of entanglement over long distances. Recently, important experimental progress has been made towards their implementation. However, the entanglement rates and scalability of current approaches are limited by relatively low retrieval and single-photon detector efficiencies. We propose a scheme, which makes use of fluorescent detection of stored excitations to significantly increase the efficiency of connection and hence the rate. Practical performance and possible experimental realizations of the new protocol are discussed. VL - 81 UR - http://arxiv.org/abs/0907.3839v2 CP - 2 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.81.020303 ER - TY - JOUR T1 - Quantum computation and pseudo-telepathic games JF - Philosophy of Science Y1 - 2010 A1 - Jeffrey Bub AB - A quantum algorithm succeeds not because the superposition principle allows 'the computation of all values of a function at once' via 'quantum parallelism,' but rather because the structure of a quantum state space allows new sorts of correlations associated with entanglement, with new possibilities for information-processing transformations between correlations, that are not possible in a classical state space. I illustrate this with an elementary example of a problem for which a quantum algorithm is more efficient than any classical algorithm. I also introduce the notion of 'pseudo-telepathic' games and show how the difference between classical and quantum correlations plays a similar role here for games that can be won by quantum players exploiting entanglement, but not by classical players whose only allowed common resource consists of shared strings of random numbers (common causes of the players' correlated responses in a game). VL - 75 U4 - 458-472 UR - http://arxiv.org/abs/1005.2449v1 J1 - Philosophy of Science 75 ER - TY - JOUR T1 - Quantum probabilities: an information-theoretic interpretation Y1 - 2010 A1 - Jeffrey Bub AB - This Chapter develops a realist information-theoretic interpretation of the nonclassical features of quantum probabilities. On this view, what is fundamental in the transition from classical to quantum physics is the recognition that \emph{information in the physical sense has new structural features}, just as the transition from classical to relativistic physics rests on the recognition that space-time is structurally different than we thought. Hilbert space, the event space of quantum systems, is interpreted as a kinematic (i.e., pre-dynamic) framework for an indeterministic physics, in the sense that the geometric structure of Hilbert space imposes objective probabilistic or information-theoretic constraints on correlations between events, just as the geometric structure of Minkowski space in special relativity imposes spatio-temporal kinematic constraints on events. The interpretation of quantum probabilities is more subjectivist in spirit than other discussions in this book (e.g., the chapter by Timpson), insofar as the quantum state is interpreted as a credence function---a bookkeeping device for keeping track of probabilities---but it is also objective (or intersubjective), insofar as the credences specified by the quantum state are understood as uniquely determined, via Gleason's theorem, by objective correlational constraints on events in the nonclassical quantum event space defined by the subspace structure of Hilbert space. UR - http://arxiv.org/abs/1005.2448v1 ER - TY - JOUR T1 - Quantum state tomography via compressed sensing JF - Physical Review Letters Y1 - 2010 A1 - David Gross A1 - Yi-Kai Liu A1 - Steven T. Flammia A1 - Stephen Becker A1 - Jens Eisert AB - We establish methods for quantum state tomography based on compressed sensing. These methods are specialized for quantum states that are fairly pure, and they offer a significant performance improvement on large quantum systems. In particular, they are able to reconstruct an unknown density matrix of dimension d and rank r using O(rd log^2 d) measurement settings, compared to standard methods that require d^2 settings. Our methods have several features that make them amenable to experimental implementation: they require only simple Pauli measurements, use fast convex optimization, are stable against noise, and can be applied to states that are only approximately low-rank. The acquired data can be used to certify that the state is indeed close to pure, so no a priori assumptions are needed. We present both theoretical bounds and numerical simulations. VL - 105 UR - http://arxiv.org/abs/0909.3304v4 CP - 15 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.105.150401 ER - TY - JOUR T1 - Von Neumann's 'No Hidden Variables' Proof: A Re-Appraisal JF - Foundations of Physics Y1 - 2010 A1 - Jeffrey Bub AB - Since the analysis by John Bell in 1965, the consensus in the literature is that von Neumann's 'no hidden variables' proof fails to exclude any significant class of hidden variables. Bell raised the question whether it could be shown that any hidden variable theory would have to be nonlocal, and in this sense 'like Bohm's theory.' His seminal result provides a positive answer to the question. I argue that Bell's analysis misconstrues von Neumann's argument. What von Neumann proved was the impossibility of recovering the quantum probabilities from a hidden variable theory of dispersion free (deterministic) states in which the quantum observables are represented as the 'beables' of the theory, to use Bell's term. That is, the quantum probabilities could not reflect the distribution of pre-measurement values of beables, but would have to be derived in some other way, e.g., as in Bohm's theory, where the probabilities are an artefact of a dynamical process that is not in fact a measurement of any beable of the system. VL - 40 U4 - 1333 - 1340 UR - http://arxiv.org/abs/1006.0499v1 CP - 9-10 J1 - Found Phys U5 - 10.1007/s10701-010-9480-9 ER - TY - JOUR T1 - Alkaline-Earth-Metal Atoms as Few-Qubit Quantum Registers JF - Physical Review Letters Y1 - 2009 A1 - Alexey V. Gorshkov A1 - Ana Maria Rey A1 - Andrew J. Daley A1 - Martin M. Boyd A1 - Jun Ye A1 - Peter Zoller A1 - Mikhail D. Lukin AB - We propose and analyze a novel approach to quantum information processing, in which multiple qubits can be encoded and manipulated using electronic and nuclear degrees of freedom associated with individual alkaline-earth atoms trapped in an optical lattice. Specifically, we describe how the qubits within each register can be individually manipulated and measured with sub-wavelength optical resolution. We also show how such few-qubit registers can be coupled to each other in optical superlattices via conditional tunneling to form a scalable quantum network. Finally, potential applications to quantum computation and precision measurements are discussed. VL - 102 UR - http://arxiv.org/abs/0812.3660v2 CP - 11 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.102.110503 ER - TY - JOUR T1 - Black-box Hamiltonian simulation and unitary implementation Y1 - 2009 A1 - Dominic W. Berry A1 - Andrew M. Childs AB - We present general methods for simulating black-box Hamiltonians using quantum walks. These techniques have two main applications: simulating sparse Hamiltonians and implementing black-box unitary operations. In particular, we give the best known simulation of sparse Hamiltonians with constant precision. Our method has complexity linear in both the sparseness D (the maximum number of nonzero elements in a column) and the evolution time t, whereas previous methods had complexity scaling as D^4 and were superlinear in t. We also consider the task of implementing an arbitrary unitary operation given a black-box description of its matrix elements. Whereas standard methods for performing an explicitly specified N x N unitary operation use O(N^2) elementary gates, we show that a black-box unitary can be performed with bounded error using O(N^{2/3} (log log N)^{4/3}) queries to its matrix elements. In fact, except for pathological cases, it appears that most unitaries can be performed with only O(sqrt{N}) queries, which is optimal. UR - http://arxiv.org/abs/0910.4157v4 J1 - Quantum Information and Computation 12 ER - TY - JOUR T1 - Contextuality and nonlocality in 'no signaling' theories JF - Foundations of Physics Y1 - 2009 A1 - Jeffrey Bub A1 - Allen Stairs AB - We define a family of 'no signaling' bipartite boxes with arbitrary inputs and binary outputs, and with a range of marginal probabilities. The defining correlations are motivated by the Klyachko version of the Kochen-Specker theorem, so we call these boxes Kochen-Specker-Klyachko boxes or, briefly, KS-boxes. The marginals cover a variety of cases, from those that can be simulated classically to the superquantum correlations that saturate the Clauser-Horne-Shimony-Holt inequality, when the KS-box is a generalized PR-box (hence a vertex of the `no signaling' polytope). We show that for certain marginal probabilities a KS-box is classical with respect to nonlocality as measured by the Clauser-Horne-Shimony-Holt correlation, i.e., no better than shared randomness as a resource in simulating a PR-box, even though such KS-boxes cannot be perfectly simulated by classical or quantum resources for all inputs. We comment on the significance of these results for contextuality and nonlocality in 'no signaling' theories. VL - 39 U4 - 690 - 711 UR - http://arxiv.org/abs/0903.1462v2 CP - 7 J1 - Found Phys U5 - 10.1007/s10701-009-9307-8 ER - TY - JOUR T1 - Efficient quantum processing of ideals in finite rings Y1 - 2009 A1 - Pawel M. Wocjan A1 - Stephen P. Jordan A1 - Hamed Ahmadi A1 - Joseph P. Brennan AB - Suppose we are given black-box access to a finite ring R, and a list of generators for an ideal I in R. We show how to find an additive basis representation for I in poly(log |R|) time. This generalizes a recent quantum algorithm of Arvind et al. which finds a basis representation for R itself. We then show that our algorithm is a useful primitive allowing quantum computers to rapidly solve a wide variety of problems regarding finite rings. In particular we show how to test whether two ideals are identical, find their intersection, find their quotient, prove whether a given ring element belongs to a given ideal, prove whether a given element is a unit, and if so find its inverse, find the additive and multiplicative identities, compute the order of an ideal, solve linear equations over rings, decide whether an ideal is maximal, find annihilators, and test the injectivity and surjectivity of ring homomorphisms. These problems appear to be hard classically. UR - http://arxiv.org/abs/0908.0022v1 ER - TY - JOUR T1 - Entanglement Cost of Nonlocal Measurements JF - Physical Review A Y1 - 2009 A1 - Somshubhro Bandyopadhyay A1 - Gilles Brassard A1 - Shelby Kimmel A1 - William K. Wootters AB - For certain joint measurements on a pair of spatially separated particles, we ask how much entanglement is needed to carry out the measurement exactly. For a class of orthogonal measurements on two qubits with partially entangled eigenstates, we present upper and lower bounds on the entanglement cost. The upper bound is based on a recent result by D. Berry [Phys. Rev. A 75, 032349 (2007)]. The lower bound, based on the entanglement production capacity of the measurement, implies that for almost all measurements in the class we consider, the entanglement required to perform the measurement is strictly greater than the average entanglement of its eigenstates. On the other hand, we show that for any complete measurement in d x d dimensions that is invariant under all local Pauli operations, the cost of the measurement is exactly equal to the average entanglement of the states associated with the outcomes. VL - 80 UR - http://arxiv.org/abs/0809.2264v4 CP - 1 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.80.012313 ER - TY - JOUR T1 - Locality Bounds on Hamiltonians for Stabilizer Codes JF - Quantum Information and Computation Y1 - 2009 A1 - Stephen S. Bullock A1 - Dianne P. O'Leary AB - In this paper, we study the complexity of Hamiltonians whose groundstate is a stabilizer code. We introduce various notions of k-locality of a stabilizer code, inherited from the associated stabilizer group. A choice of generators leads to a Hamiltonian with the code in its groundspace. We establish bounds on the locality of any other Hamiltonian whose groundspace contains such a code, whether or not its Pauli tensor summands commute. Our results provide insight into the cost of creating an energy gap for passive error correction and for adiabatic quantum computing. The results simplify in the cases of XZ-split codes such as Calderbank-Shor-Steane stabilizer codes and topologically-ordered stabilizer codes arising from surface cellulations. VL - 9 UR - http://www.cs.umd.edu/~oleary/reprints/j91.pdf ER - TY - JOUR T1 - Anyonic interferometry and protected memories in atomic spin lattices JF - Nature Physics Y1 - 2008 A1 - Liang Jiang A1 - Gavin K. Brennen A1 - Alexey V. Gorshkov A1 - Klemens Hammerer A1 - Mohammad Hafezi A1 - Eugene Demler A1 - Mikhail D. Lukin A1 - Peter Zoller AB - Strongly correlated quantum systems can exhibit exotic behavior called topological order which is characterized by non-local correlations that depend on the system topology. Such systems can exhibit remarkable phenomena such as quasi-particles with anyonic statistics and have been proposed as candidates for naturally fault-tolerant quantum computation. Despite these remarkable properties, anyons have never been observed in nature directly. Here we describe how to unambiguously detect and characterize such states in recently proposed spin lattice realizations using ultra-cold atoms or molecules trapped in an optical lattice. We propose an experimentally feasible technique to access non-local degrees of freedom by performing global operations on trapped spins mediated by an optical cavity mode. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit. Furthermore, our technique can be used to probe statistics and dynamics of anyonic excitations. VL - 4 U4 - 482 - 488 UR - http://arxiv.org/abs/0711.1365v1 CP - 6 J1 - Nat Phys U5 - 10.1038/nphys943 ER - TY - JOUR T1 - High-sensitivity diamond magnetometer with nanoscale resolution JF - Nature Physics Y1 - 2008 A1 - J. M. Taylor A1 - P. Cappellaro A1 - L. Childress A1 - L. Jiang A1 - D. Budker A1 - P. R. Hemmer A1 - A. Yacoby A1 - R. Walsworth A1 - M. D. Lukin AB - We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz$^{1/2}$. VL - 4 U4 - 810 - 816 UR - http://arxiv.org/abs/0805.1367v1 CP - 10 J1 - Nat Phys U5 - 10.1038/nphys1075 ER - TY - JOUR T1 - Optimizing Slow and Stored Light for Multidisciplinary Applications JF - Proc. SPIE Y1 - 2008 A1 - Klein, M A1 - Xiao, Y A1 - Alexey V. Gorshkov A1 - M Hohensee A1 - C D Leung A1 - M R Browning A1 - Phillips, D F A1 - Novikova, I A1 - Walsworth, R L VL - 6904 U4 - 69040C UR - http://spie.org/x648.xml?product_id=772216&Search_Origin=QuickSearch&Search_Results_URL=http://spie.org/x1636.xml&Alternate_URL=http://spie.org/x18509.xml&Alternate_URL_Name=timeframe&Alternate_URL_Value=Exhibitors&UseJavascript=1&Please_Wait_URL=http://s ER - TY - JOUR T1 - The Power of Unentanglement Y1 - 2008 A1 - Scott Aaronson A1 - Salman Beigi A1 - Andrew Drucker A1 - Bill Fefferman A1 - Peter Shor AB - The class QMA(k), introduced by Kobayashi et al., consists of all languages that can be verified using k unentangled quantum proofs. Many of the simplest questions about this class have remained embarrassingly open: for example, can we give any evidence that k quantum proofs are more powerful than one? Does QMA(k)=QMA(2) for k>=2? Can QMA(k) protocols be amplified to exponentially small error? In this paper, we make progress on all of the above questions. First, we give a protocol by which a verifier can be convinced that a 3SAT formula of size n is satisfiable, with constant soundness, given ~O(sqrt(n)) unentangled quantum witnesses with O(log n) qubits each. Our protocol relies on the existence of very short PCPs. Second, we show that assuming a weak version of the Additivity Conjecture from quantum information theory, any QMA(2) protocol can be amplified to exponentially small error, and QMA(k)=QMA(2) for all k>=2. Third, we prove the nonexistence of "perfect disentanglers" for simulating multiple Merlins with one. UR - http://arxiv.org/abs/0804.0802v2 ER - TY - JOUR T1 - Suppression of Inelastic Collisions Between Polar Molecules With a Repulsive Shield JF - Phys. Rev. Lett. Y1 - 2008 A1 - Alexey V. Gorshkov A1 - Rabl, P A1 - Pupillo, G A1 - Micheli, A A1 - Zoller, P A1 - Lukin, M D A1 - Büchler, H P VL - 101 U4 - 073201 UR - http://link.aps.org/abstract/PRL/v101/e073201/ ER - TY - JOUR T1 - Signatures of incoherence in a quantum information processor Y1 - 2007 A1 - Michael K. Henry A1 - Alexey V. Gorshkov A1 - Yaakov S. Weinstein A1 - Paola Cappellaro A1 - Joseph Emerson A1 - Nicolas Boulant A1 - Jonathan S. Hodges A1 - Chandrasekhar Ramanathan A1 - Timothy F. Havel A1 - Rudy Martinez A1 - David G. Cory AB - Incoherent noise is manifest in measurements of expectation values when the underlying ensemble evolves under a classical distribution of unitary processes. While many incoherent processes appear decoherent, there are important differences. The distribution functions underlying incoherent processes are either static or slowly varying with respect to control operations and so the errors introduced by these distributions are refocusable. The observation and control of incoherence in small Hilbert spaces is well known. Here we explore incoherence during an entangling operation, such as is relevant in quantum information processing. As expected, it is more difficult to separate incoherence and decoherence over such processes. However, by studying the fidelity decay under a cyclic entangling map we are able to identify distinctive experimental signatures of incoherence. This result is demonstrated both through numerical simulations and experimentally in a three qubit nuclear magnetic resonance implementation. UR - http://arxiv.org/abs/0705.3666v2 ER - TY - JOUR T1 - Two dogmas about quantum mechanics Y1 - 2007 A1 - Jeffrey Bub A1 - Itamar Pitowsky AB - We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantum mechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma is the view that the quantum state has an ontological significance analogous to the significance of the classical state as the 'truthmaker' for propositions about the occurrence and non-occurrence of events, i.e., that the quantum state is a representation of physical reality. We show how both dogmas can be rejected in a realist information-theoretic interpretation of quantum mechanics as an alternative to the Everett interpretation. The Everettian, too, regards the 'big' measurement problem as a pseudo-problem, because the Everettian rejects the assumption that measurements have definite outcomes, in the sense that one particular outcome, as opposed to other possible outcomes, actually occurs in a quantum measurement process. By contrast with the Everettians, we accept that measurements have definite outcomes. By contrast with the Bohmians and the GRW 'collapse' theorists who add structure to the theory and propose dynamical solutions to the 'big' measurement problem, we take the problem to arise from the failure to see the significance of Hilbert space as a new kinematic framework for the physics of an indeterministic universe, in the sense that Hilbert space imposes kinematic (i.e., pre-dynamic) objective probabilistic constraints on correlations between events. UR - http://arxiv.org/abs/0712.4258v2 ER - TY - JOUR T1 - Parallelism for Quantum Computation with Qudits JF - Physical Review A Y1 - 2006 A1 - Dianne P. O'Leary A1 - Gavin K. Brennen A1 - Stephen S. Bullock AB - Robust quantum computation with d-level quantum systems (qudits) poses two requirements: fast, parallel quantum gates and high fidelity two-qudit gates. We first describe how to implement parallel single qudit operations. It is by now well known that any single-qudit unitary can be decomposed into a sequence of Givens rotations on two-dimensional subspaces of the qudit state space. Using a coupling graph to represent physically allowed couplings between pairs of qudit states, we then show that the logical depth of the parallel gate sequence is equal to the height of an associated tree. The implementation of a given unitary can then optimize the tradeoff between gate time and resources used. These ideas are illustrated for qudits encoded in the ground hyperfine states of the atomic alkalies $^{87}$Rb and $^{133}$Cs. Second, we provide a protocol for implementing parallelized non-local two-qudit gates using the assistance of entangled qubit pairs. Because the entangled qubits can be prepared non-deterministically, this offers the possibility of high fidelity two-qudit gates. VL - 74 UR - http://arxiv.org/abs/quant-ph/0603081v1 CP - 3 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.74.032334 ER - TY - JOUR T1 - Quantum computation from a quantum logical perspective Y1 - 2006 A1 - Jeffrey Bub AB - It is well-known that Shor's factorization algorithm, Simon's period-finding algorithm, and Deutsch's original XOR algorithm can all be formulated as solutions to a hidden subgroup problem. Here the salient features of the information-processing in the three algorithms are presented from a different perspective, in terms of the way in which the algorithms exploit the non-Boolean quantum logic represented by the projective geometry of Hilbert space. From this quantum logical perspective, the XOR algorithm appears directly as a special case of Simon's algorithm, and all three algorithms can be seen as exploiting the non-Boolean logic represented by the subspace structure of Hilbert space in a similar way. Essentially, a global property of a function (such as a period, or a disjunctive property) is encoded as a subspace in Hilbert space representing a quantum proposition, which can then be efficiently distinguished from alternative propositions, corresponding to alternative global properties, by a measurement (or sequence of measurements) that identifies the target proposition as the proposition represented by the subspace containing the final state produced by the algorithm. UR - http://arxiv.org/abs/quant-ph/0605243v2 ER - TY - JOUR T1 - Asymptotically Optimal Quantum Circuits for d-level Systems JF - Physical Review Letters Y1 - 2005 A1 - Stephen S. Bullock A1 - Dianne P. O'Leary A1 - Gavin K. Brennen AB - As a qubit is a two-level quantum system whose state space is spanned by |0>, |1>, so a qudit is a d-level quantum system whose state space is spanned by |0>,...,|d-1>. Quantum computation has stimulated much recent interest in algorithms factoring unitary evolutions of an n-qubit state space into component two-particle unitary evolutions. In the absence of symmetry, Shende, Markov and Bullock use Sard's theorem to prove that at least C 4^n two-qubit unitary evolutions are required, while Vartiainen, Moettoenen, and Salomaa (VMS) use the QR matrix factorization and Gray codes in an optimal order construction involving two-particle evolutions. In this work, we note that Sard's theorem demands C d^{2n} two-qudit unitary evolutions to construct a generic (symmetry-less) n-qudit evolution. However, the VMS result applied to virtual-qubits only recovers optimal order in the case that d is a power of two. We further construct a QR decomposition for d-multi-level quantum logics, proving a sharp asymptotic of Theta(d^{2n}) two-qudit gates and thus closing the complexity question for all d-level systems (d finite.) Gray codes are not required, and the optimal Theta(d^{2n}) asymptotic also applies to gate libraries where two-qudit interactions are restricted by a choice of certain architectures. VL - 94 UR - http://arxiv.org/abs/quant-ph/0410116v2 CP - 23 J1 - Phys. Rev. Lett. U5 - 10.1103/PhysRevLett.94.230502 ER - TY - JOUR T1 - Bragg Spectroscopy of ultracold atoms loaded in an optical lattice JF - Physical Review A Y1 - 2005 A1 - Ana Maria Rey A1 - P. Blair Blakie A1 - Guido Pupillo A1 - Carl J. Williams A1 - Charles W. Clark AB - We study Bragg spectroscopy of ultra-cold atoms in one-dimensional optical lattices as a method for probing the excitation spectrum in the Mott insulator phase, in particular the one particle-hole excitation band. Within the framework of perturbation theory we obtain an analytical expression for the dynamic structure factor $S(q,\omega)$ and use it to calculate the imparted energy which has shown to be a relevant observable in recent experiments. We test the accuracy of our approximations by comparing them with numerically exact solutions of the Bose-Hubbard model in restricted cases and establish the limits of validity of our linear response analysis. Finally we show that when the system is deep in the Mott insulator regime, its response to the Bragg perturbation is temperature dependent. We suggest that this dependence might be used as a tool to probe temperatures of order of the Mott gap. VL - 72 UR - http://arxiv.org/abs/cond-mat/0406552v2 CP - 2 J1 - Phys. Rev. A U5 - 10.1103/PhysRevA.72.023407 ER - TY - JOUR T1 - Conditionalizing and commutativity: a note on Malley Y1 - 2005 A1 - Allen Stairs A1 - Jeffrey Bub AB - This paper has been withdrawn. UR - http://arxiv.org/abs/quant-ph/0506159v2 ER - TY - JOUR T1 - Criteria for Exact Qudit Universality JF - Physical Review A Y1 - 2005 A1 - Gavin K. Brennen A1 - Dianne P. O'Leary A1 - Stephen S. Bullock AB - We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states |0>, |1>,... |d-1>. An important earlier work of Mathukrishnan and Stroud [1] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. Their technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H_{jk}^x=\hbar\Omega (|k>k iff H_{jk}^{x,y} are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=-\hbar\Omega |d-1,d-1>