17147nas a2200181 45000080041000002450100000412100069001412600015002103000011002254900007002365201657700243100001316820700002216833700002716855700001916882700002716901856003716928 2017 eng d00aPendular trapping conditions for ultracold polar molecules enforced by external electric fields0 aPendular trapping conditions for ultracold polar molecules enfor c2017/06/26 a0634220 v953 aWe theoretically investigate trapping conditions for ultracold polar molecules in optical lattices, when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the polar 23Na40K polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of 5.26(15) kV/cm and an angle of 54.7∘ between this field and the polarization of the optical laser lead to a trapping design for 23Na40K molecules where decoherences due laser-intensity fluctuations and fluctuations in the direction of its polarization are kept to a minimum. One standard deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions pairs of hyperfine-rotational states of v=0 molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces.

1 aLi, Ming1 aPetrov, Alexander1 aMakrides, Constantinos1 aTiesinga, Eite1 aKotochigova, Svetlanta uhttps://arxiv.org/abs/1703.0383901318nas a2200145 4500008004100000245008900041210006900130260001300199490000800212520084800220100002201068700001901090700002601109856003701135 2012 eng d00aAnisotropy induced Feshbach resonances in a quantum dipolar gas of magnetic atoms
0 aAnisotropy induced Feshbach resonances in a quantum dipolar gas c2012/9/70 v1093 a We explore the anisotropic nature of Feshbach resonances in the collision
between ultracold magnetic submerged-shell dysprosium atoms, which can only
occur due to couplings to rotating bound states. This is in contrast to
well-studied alkali-metal atom collisions, where most Feshbach resonances are
hyperfine induced and due to rotation-less bound states. Our novel
first-principle coupled-channel calculation of the collisions between
open-4f-shell spin-polarized bosonic dysprosium reveals a striking correlation
between the anisotropy due to magnetic dipole-dipole and electrostatic
interactions and the Feshbach spectrum as a function of an external magnetic
field. Over a 20 mT magnetic field range we predict about a dozen Feshbach
resonances and show that the resonance locations are exquisitely sensitive to
the dysprosium isotope.
1 aPetrov, Alexander1 aTiesinga, Eite1 aKotochigova, Svetlana uhttp://arxiv.org/abs/1203.4172v1