17147nas a2200181 45000080041000002450100000412100069001412600015002103000011002254900007002365201657700243100001316820700002216833700002716855700001916882700002716901856003716928 2017 eng d00aPendular trapping conditions for ultracold polar molecules enforced by external electric fields0 aPendular trapping conditions for ultracold polar molecules enfor c2017/06/26 a0634220 v953 aWe theoretically investigate trapping conditions for ultracold polar molecules in optical lattices, when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the polar 23Na40K polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of 5.26(15) kV/cm and an angle of 54.7∘ between this field and the polarization of the optical laser lead to a trapping design for 23Na40K molecules where decoherences due laser-intensity fluctuations and fluctuations in the direction of its polarization are kept to a minimum. One standard deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions pairs of hyperfine-rotational states of v=0 molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces.

1 aLi, Ming1 aPetrov, Alexander1 aMakrides, Constantinos1 aTiesinga, Eite1 aKotochigova, Svetlanta uhttps://arxiv.org/abs/1703.03839