01428nas a2200181 4500008004100000245008400041210006900125260001500194300001600209490000700225520086200232100002301094700001901117700002001136700002301156700002301179856004401202 2005 eng d00aScalable register initialization for quantum computing in an optical lattice
0 aScalable register initialization for quantum computing in an opt c2005/06/14 a1687 - 16940 v383 a The Mott insulator state created by loading an atomic Bose-Einstein
condensate (BEC) into an optical lattice may be used as a means to prepare a
register of atomic qubits in a quantum computer. Such architecture requires a
lattice commensurately filled with atoms, which corresponds to the insulator
state only in the limit of zero inter-well tunneling. We show that a lattice
with spatial inhomogeneity created by a quadratic magnetic trapping potential
can be used to isolate a subspace in the center which is impervious to
hole-hoping. Components of the wavefunction with more than one atom in any well
can be projected out by selective measurement on a molecular photo-associative
transition. Maintaining the molecular coupling induces a quantum Zeno effect
that can sustain a commensurately filled register for the duration of a quantum
computation.
1 aBrennen, Gavin, K.1 aPupillo, Guido1 aRey, Ana, Maria1 aClark, Charles, W.1 aWilliams, Carl, J. uhttp://arxiv.org/abs/quant-ph/0312069v1