@article {1907,
title = {Steady-state superradiance with Rydberg polaritons},
journal = {arXiv:1611.00797},
year = {2016},
month = {2016/11/02},
abstract = {A steady-state superradiant laser can be used to generate ultranarrow-linewidth light, and thus has important applications in the fields of quantum information and precision metrology. However, the light produced by such a laser is still essentially classical. Here, we show that the introduction of a Rydberg medium into a cavity containing atoms with a narrow optical transition can lead to the steady-state superradiant emission of ultranarrow-linewidth\ nonclassical\ light. The cavity nonlinearity induced by the Rydberg medium strongly modifies the superradiance threshold, and leads to a Mollow triplet in the cavity output spectrum\−this behavior can be understood as an unusual analogue of resonance fluorescence. The cavity output spectrum has an extremely sharp central peak, with a linewidth that can be far narrower than that of a classical superradiant laser. This unprecedented spectral sharpness, together with the nonclassical nature of the light, could lead to new applications in which spectrally pure\ quantum\ light is desired.

},
url = {https://arxiv.org/abs/1611.00797},
author = {Zhe-Xuan Gong and Minghui Xu and Michael Foss-Feig and James K. Thompson and Ana Maria Rey and Murray Holland and Alexey V. Gorshkov}
}
@article {1479,
title = {Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect
},
journal = {Physical Review Letters},
volume = {112},
year = {2014},
month = {2014/2/20},
abstract = { We investigate theoretically the suppression of two-body losses when the
on-site loss rate is larger than all other energy scales in a lattice. This
work quantitatively explains the recently observed suppression of chemical
reactions between two rotational states of fermionic KRb molecules confined in
one-dimensional tubes with a weak lattice along the tubes [Yan et al., Nature
501, 521-525 (2013)]. New loss rate measurements performed for different
lattice parameters but under controlled initial conditions allow us to show
that the loss suppression is a consequence of the combined effects of lattice
confinement and the continuous quantum Zeno effect. A key finding, relevant for
generic strongly reactive systems, is that while a single-band theory can
qualitatively describe the data, a quantitative analysis must include multiband
effects. Accounting for these effects reduces the inferred molecule filling
fraction by a factor of five. A rate equation can describe much of the data,
but to properly reproduce the loss dynamics with a fixed filling fraction for
all lattice parameters we develop a mean-field model and benchmark it with
numerically exact time-dependent density matrix renormalization group
calculations.
},
doi = {10.1103/PhysRevLett.112.070404},
url = {http://arxiv.org/abs/1310.2221v2},
author = {Bihui Zhu and Bryce Gadway and Michael Foss-Feig and Johannes Schachenmayer and Michael Wall and Kaden R. A. Hazzard and Bo Yan and Steven A. Moses and Jacob P. Covey and Deborah S. Jin and Jun Ye and Murray Holland and Ana Maria Rey}
}