@article {1205,
title = {Universal computation by quantum walk},
journal = {Physical Review Letters},
volume = {102},
year = {2009},
month = {2009/5/4},
abstract = { In some of the earliest work on quantum mechanical computers, Feynman showed
how to implement universal quantum computation by the dynamics of a
time-independent Hamiltonian. I show that this remains possible even if the
Hamiltonian is restricted to be a sparse matrix with all entries equal to 0 or
1, i.e., the adjacency matrix of a low-degree graph. Thus quantum walk can be
regarded as a universal computational primitive, with any desired quantum
computation encoded entirely in some underlying graph. The main idea of the
construction is to implement quantum gates by scattering processes.
},
doi = {10.1103/PhysRevLett.102.180501},
url = {http://arxiv.org/abs/0806.1972v1},
author = {Andrew M. Childs}
}