Title | Quantum algorithm for multivariate polynomial interpolation |

Publication Type | Journal Article |

Year of Publication | 2017 |

Authors | Chen, J, Childs, AM, Hung, S-H |

Date Published | 2017/01/15 |

Abstract | How many quantum queries are required to determine the coefficients of a degree-d polynomial in n variables? We present and analyze quantum algorithms for this multivariate polynomial interpolation problem over the fields Fq, R, and C. We show that kC and 2kC queries suffice to achieve probability 1 for C and R, respectively, where kC = ⌈ 1 n+1 ( n+d d )⌉ except for d = 2 and four other special cases. For Fq, we show that ⌈ d n+d ( n+d d )⌉ queries suffice to achieve probability approaching 1 for large field order q. The classical query complexity of this problem is ( n+d d ), so our result provides a speedup by a factor of n + 1, n+1 2 , and n+d d for C, R, and Fq, respectively. Thus we find a much larger gap between classical and quantum algorithms than the univariate case, where the speedup is by a factor of 2. For the case of Fq, we conjecture that 2kC queries also suffice to achieve probability approaching 1 for large field order q, although we leave this as an open problem. |

URL | https://arxiv.org/abs/1701.03990 |